找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Analysis and Computing; ICMAC 2019, Kalavak R. N. Mohapatra,S. Yugesh,C. Kalaivani Conference proceedings 2021 The Editor(s)

[復(fù)制鏈接]
樓主: 劉興旺
31#
發(fā)表于 2025-3-26 22:36:53 | 只看該作者
32#
發(fā)表于 2025-3-27 04:56:43 | 只看該作者
,Bifurcation Analysis and Chaos Control for a Discrete Fractional-Order Prey–Predator System, with the stability of the system are discussed. The chaotic behavior of the system is analyzed with the bifurcation theory to prove the existence of periodic doubling and Neimark–Sacker bifurcations. The control strategy are employed to the system to study the containment of the chaos and simulations are performed to support the results.
33#
發(fā)表于 2025-3-27 08:10:17 | 只看該作者
Conference proceedings 2021lems stated in a qualitative manner. This book aims at disseminating recent advances in areas of mathematical analysis, soft computing, approximation and optimization through original research articles and expository survey papers. This book will be of value to research scholars, professors, and industrialists working in these areas..
34#
發(fā)表于 2025-3-27 12:20:06 | 只看該作者
35#
發(fā)表于 2025-3-27 17:03:12 | 只看該作者
36#
發(fā)表于 2025-3-27 19:37:05 | 只看該作者
Conference proceedings 2021i Sivasubramaniya Nadar College of Engineering, Chennai, India, from 23–24?December 2019.?Having found its applications in game theory, economics, and operations research, mathematical analysis plays an important role in analyzing models of physical systems and provides a sound logical base for prob
37#
發(fā)表于 2025-3-28 00:50:10 | 只看該作者
38#
發(fā)表于 2025-3-28 05:53:37 | 只看該作者
39#
發(fā)表于 2025-3-28 08:16:30 | 只看該作者
All Finite Topological Spaces are Weakly Reconstructible,. then . is homeomorphic to .. A topological space . is said to be weakly reconstructible if it is reconstructible from its multi-deck. It is shown that all finite topological spaces are weakly reconstructible.
40#
發(fā)表于 2025-3-28 11:18:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 05:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
红安县| 辽阳市| 花莲县| 石台县| 滨州市| 都安| 房山区| 敦化市| 苍梧县| 镇坪县| 灵川县| 钟祥市| 铅山县| 额尔古纳市| 额济纳旗| 镇赉县| 吴川市| 新野县| 舞钢市| 樟树市| 乌兰县| 新宁县| 太仓市| 西乌| 珲春市| 卫辉市| 曲麻莱县| 江源县| 西林县| 锡林郭勒盟| 凤山县| 徐闻县| 克拉玛依市| 河源市| 随州市| 兴安县| 陆川县| 闵行区| 莱州市| 来安县| 闵行区|