找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Analysis and Computing; ICMAC 2019, Kalavak R. N. Mohapatra,S. Yugesh,C. Kalaivani Conference proceedings 2021 The Editor(s)

[復(fù)制鏈接]
樓主: 劉興旺
31#
發(fā)表于 2025-3-26 22:36:53 | 只看該作者
32#
發(fā)表于 2025-3-27 04:56:43 | 只看該作者
,Bifurcation Analysis and Chaos Control for a Discrete Fractional-Order Prey–Predator System, with the stability of the system are discussed. The chaotic behavior of the system is analyzed with the bifurcation theory to prove the existence of periodic doubling and Neimark–Sacker bifurcations. The control strategy are employed to the system to study the containment of the chaos and simulations are performed to support the results.
33#
發(fā)表于 2025-3-27 08:10:17 | 只看該作者
Conference proceedings 2021lems stated in a qualitative manner. This book aims at disseminating recent advances in areas of mathematical analysis, soft computing, approximation and optimization through original research articles and expository survey papers. This book will be of value to research scholars, professors, and industrialists working in these areas..
34#
發(fā)表于 2025-3-27 12:20:06 | 只看該作者
35#
發(fā)表于 2025-3-27 17:03:12 | 只看該作者
36#
發(fā)表于 2025-3-27 19:37:05 | 只看該作者
Conference proceedings 2021i Sivasubramaniya Nadar College of Engineering, Chennai, India, from 23–24?December 2019.?Having found its applications in game theory, economics, and operations research, mathematical analysis plays an important role in analyzing models of physical systems and provides a sound logical base for prob
37#
發(fā)表于 2025-3-28 00:50:10 | 只看該作者
38#
發(fā)表于 2025-3-28 05:53:37 | 只看該作者
39#
發(fā)表于 2025-3-28 08:16:30 | 只看該作者
All Finite Topological Spaces are Weakly Reconstructible,. then . is homeomorphic to .. A topological space . is said to be weakly reconstructible if it is reconstructible from its multi-deck. It is shown that all finite topological spaces are weakly reconstructible.
40#
發(fā)表于 2025-3-28 11:18:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
思南县| 晋江市| 岢岚县| 白银市| 合水县| 鸡泽县| 紫阳县| 双鸭山市| 阿坝| 静乐县| 永兴县| 和龙市| 合山市| 亚东县| 行唐县| 思南县| 佛坪县| 康保县| 克东县| 桂林市| 绥德县| 蓝田县| 读书| 高碑店市| 丹东市| 大洼县| 连南| 旬阳县| 永登县| 抚宁县| 鄂伦春自治旗| 延吉市| 类乌齐县| 顺义区| 霍城县| 新源县| 虞城县| 华容县| 昆山市| 卢龙县| 宜州市|