找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Analysis II: Optimisation, Differential Equations and Graph Theory; ICRAPAM 2018, New De Naokant Deo,Vijay Gupta,P. N. Agrawal

[復(fù)制鏈接]
樓主: CHORD
21#
發(fā)表于 2025-3-25 05:50:20 | 只看該作者
Conference proceedings 2020matics (ICRAPAM), held at Delhi Technological University, India, on 23–25 October 2018. Divided into two volumes, it discusses major topics in mathematical analysis and its applications, and demonstrates the versatility and inherent beauty of analysis. It also shows the use of analytical techniques
22#
發(fā)表于 2025-3-25 10:33:00 | 只看該作者
Exact Solution for Mixed Integral Equations by Method of Bernoulli Polynomials,convert the integral equation into the algebraic equation using of Bernoulli matrix equation. Finally, there are some numerical results that have been given for illustrating the efficiency and exactness of this method.
23#
發(fā)表于 2025-3-25 15:23:31 | 只看該作者
24#
發(fā)表于 2025-3-25 17:23:39 | 只看該作者
25#
發(fā)表于 2025-3-25 22:01:51 | 只看該作者
On Cliques and Clique Chromatic Numbers in Line, Lict and Lictact Graphs, incident to .; and two vertices in . be adjacent if they are adjacent or incident elements of .. In this paper, we establish results on cliques and clique chromatic numbers in line, lict and litact graphs of any graph.
26#
發(fā)表于 2025-3-26 03:03:21 | 只看該作者
27#
發(fā)表于 2025-3-26 07:06:34 | 只看該作者
28#
發(fā)表于 2025-3-26 12:19:08 | 只看該作者
Study on a Free Boundary Problem Arising in Porous Media,ial differential equation arising as a governing equation for this problem. The SLM is a newly developed method, which is a very efficient and reliable method to handle nonlinear problems. The numerical and the graphical representation of the solution has been discussed using MATLAB under the certain valid assumption.
29#
發(fā)表于 2025-3-26 13:46:54 | 只看該作者
30#
發(fā)表于 2025-3-26 20:21:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 14:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
河池市| 通城县| 山阳县| 阿克陶县| 绿春县| 美姑县| 越西县| 福安市| 远安县| 台北市| 林芝县| 林州市| 曲松县| 浦城县| 历史| 谢通门县| 仪征市| 吴川市| 凉山| 祁门县| 吉木乃县| 金山区| 波密县| 云南省| 台东市| 柳江县| 囊谦县| 宝清县| 商水县| 宜州市| 玉山县| 镶黄旗| 常山县| 西华县| 淮南市| 博野县| 淅川县| 南通市| 牡丹江市| 汤阴县| 包头市|