找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Analysis II: Optimisation, Differential Equations and Graph Theory; ICRAPAM 2018, New De Naokant Deo,Vijay Gupta,P. N. Agrawal

[復制鏈接]
樓主: CHORD
21#
發(fā)表于 2025-3-25 05:50:20 | 只看該作者
Conference proceedings 2020matics (ICRAPAM), held at Delhi Technological University, India, on 23–25 October 2018. Divided into two volumes, it discusses major topics in mathematical analysis and its applications, and demonstrates the versatility and inherent beauty of analysis. It also shows the use of analytical techniques
22#
發(fā)表于 2025-3-25 10:33:00 | 只看該作者
Exact Solution for Mixed Integral Equations by Method of Bernoulli Polynomials,convert the integral equation into the algebraic equation using of Bernoulli matrix equation. Finally, there are some numerical results that have been given for illustrating the efficiency and exactness of this method.
23#
發(fā)表于 2025-3-25 15:23:31 | 只看該作者
24#
發(fā)表于 2025-3-25 17:23:39 | 只看該作者
25#
發(fā)表于 2025-3-25 22:01:51 | 只看該作者
On Cliques and Clique Chromatic Numbers in Line, Lict and Lictact Graphs, incident to .; and two vertices in . be adjacent if they are adjacent or incident elements of .. In this paper, we establish results on cliques and clique chromatic numbers in line, lict and litact graphs of any graph.
26#
發(fā)表于 2025-3-26 03:03:21 | 只看該作者
27#
發(fā)表于 2025-3-26 07:06:34 | 只看該作者
28#
發(fā)表于 2025-3-26 12:19:08 | 只看該作者
Study on a Free Boundary Problem Arising in Porous Media,ial differential equation arising as a governing equation for this problem. The SLM is a newly developed method, which is a very efficient and reliable method to handle nonlinear problems. The numerical and the graphical representation of the solution has been discussed using MATLAB under the certain valid assumption.
29#
發(fā)表于 2025-3-26 13:46:54 | 只看該作者
30#
發(fā)表于 2025-3-26 20:21:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 17:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
安国市| 大庆市| 射阳县| 上思县| 海原县| 萨迦县| 合阳县| 玛多县| 呼和浩特市| 七台河市| 波密县| 固始县| 宁明县| 墨脱县| 惠东县| 射洪县| 梁平县| 会宁县| 石楼县| 太原市| 崇州市| 吉首市| 邹城市| 诏安县| 平湖市| 沁源县| 敦煌市| 兴业县| 丰县| 嘉义市| 平利县| 临清市| 忻州市| 盐津县| 桦甸市| 怀集县| 河间市| 汉寿县| 阜康市| 延吉市| 黄龙县|