找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mastering Machine Learning with Python in Six Steps; A Practical Implemen Manohar Swamynathan Book 20171st edition Manohar Swamynathan 201

[復(fù)制鏈接]
查看: 41668|回復(fù): 42
樓主
發(fā)表于 2025-3-21 19:25:33 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Mastering Machine Learning with Python in Six Steps
副標(biāo)題A Practical Implemen
編輯Manohar Swamynathan
視頻videohttp://file.papertrans.cn/626/625479/625479.mp4
概述Covers basic to advanced topics in an easy step-oriented manner.Concise on theory, strong focus on practical and hands-on approach.Explores advanced topics, such as Hyper-parameter tuning, deep natura
圖書封面Titlebook: Mastering Machine Learning with Python in Six Steps; A Practical Implemen Manohar Swamynathan Book 20171st edition  Manohar Swamynathan 201
描述.Master machine learning with Python in six steps and explore fundamental to advanced topics, all designed to make you a worthy practitioner.?.This book’s approach is based on the “Six degrees of separation” theory, which states that everyone and everything is a maximum of six steps away. .Mastering Machine Learning with Python in Six Steps. presents each topic in two parts: theoretical concepts and practical implementation using suitable Python packages.?.You’ll learn the fundamentals of Python programming language, machine learning history, evolution, and the system development frameworks. Key data mining/analysis concepts, such as feature dimension reduction, regression, time series forecasting and their efficient implementation in Scikit-learn are also covered. Finally, you’ll explore advanced text mining techniques, neural networks and deep learning techniques, and their implementation.?. .All the code presented in the book will be available in the form of iPython notebooks to enable you to try out these examples and extend them to your advantage..What You‘ll Learn.Examine the fundamentals of Python programming language.Review machine Learning history and evolution.Understand
出版日期Book 20171st edition
關(guān)鍵詞Machine Learning; Python; Scikit-Learn; Model Tuning; Text Mining; Neural Networks; Deep Learning
版次1
doihttps://doi.org/10.1007/978-1-4842-2866-1
isbn_ebook978-1-4842-2866-1
copyright Manohar Swamynathan 2017
The information of publication is updating

書目名稱Mastering Machine Learning with Python in Six Steps影響因子(影響力)




書目名稱Mastering Machine Learning with Python in Six Steps影響因子(影響力)學(xué)科排名




書目名稱Mastering Machine Learning with Python in Six Steps網(wǎng)絡(luò)公開度




書目名稱Mastering Machine Learning with Python in Six Steps網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Mastering Machine Learning with Python in Six Steps被引頻次




書目名稱Mastering Machine Learning with Python in Six Steps被引頻次學(xué)科排名




書目名稱Mastering Machine Learning with Python in Six Steps年度引用




書目名稱Mastering Machine Learning with Python in Six Steps年度引用學(xué)科排名




書目名稱Mastering Machine Learning with Python in Six Steps讀者反饋




書目名稱Mastering Machine Learning with Python in Six Steps讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:08:23 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:12:11 | 只看該作者
地板
發(fā)表于 2025-3-22 06:58:01 | 只看該作者
Book 20171st editionok’s approach is based on the “Six degrees of separation” theory, which states that everyone and everything is a maximum of six steps away. .Mastering Machine Learning with Python in Six Steps. presents each topic in two parts: theoretical concepts and practical implementation using suitable Python
5#
發(fā)表于 2025-3-22 08:59:28 | 只看該作者
6#
發(fā)表于 2025-3-22 15:27:27 | 只看該作者
7#
發(fā)表于 2025-3-22 20:47:51 | 只看該作者
,Step 5 – Text Mining and Recommender Systems,form of text. The process of unearthing meaningful patterns from text data is called Text Mining. In this chapter you’ll learn the high-level text mining process overview, key concepts, and common techniques involved.
8#
發(fā)表于 2025-3-22 23:49:01 | 只看該作者
,Step 6 – Deep and Reinforcement Learning,eplicate human-level intelligence in machines to solve any problems for a given area. Deep learning has shown promising outcomes in computer vision, audio processing, and text mining. The advancements in this area has led to a breakthrough such as self-driving cars. In this chapter you’ll learn abou
9#
發(fā)表于 2025-3-23 03:31:28 | 只看該作者
10#
發(fā)表于 2025-3-23 08:23:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 22:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广汉市| 沭阳县| 青田县| 吴旗县| 清水县| 庆城县| 山丹县| 杭锦后旗| 宜川县| 勐海县| 平罗县| 凉城县| 公主岭市| 德化县| 蓬安县| 江津市| 高青县| 平湖市| 望江县| 敖汉旗| 朔州市| 江华| 商洛市| 涪陵区| 大丰市| 枣强县| 云龙县| 义乌市| 磐石市| 神木县| 汪清县| 泸州市| 河津市| 六枝特区| 长治市| 城口县| 平武县| 瓮安县| 芷江| 白河县| 长武县|