找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mastering Machine Learning with Python in Six Steps; A Practical Implemen Manohar Swamynathan Book 2019Latest edition Manohar Swamynathan

[復(fù)制鏈接]
查看: 28361|回復(fù): 39
樓主
發(fā)表于 2025-3-21 16:05:22 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Mastering Machine Learning with Python in Six Steps
副標(biāo)題A Practical Implemen
編輯Manohar Swamynathan
視頻videohttp://file.papertrans.cn/626/625478/625478.mp4
概述Compares different machine learning framework implementations for each topic.Covers Reinforcement Learning and Convolutional Neural Networks.Explains best practices for model tuning for better model a
圖書封面Titlebook: Mastering Machine Learning with Python in Six Steps; A Practical Implemen Manohar Swamynathan Book 2019Latest edition  Manohar Swamynathan
描述.Explore fundamental to advanced Python 3 topics in six steps, all designed to make you a worthy practitioner.?This updated version’s approach is based on the “six degrees of separation” theory, which states that everyone and everything is a maximum of six steps away and presents each topic in two parts: theoretical concepts and practical implementation using suitable?Python 3 packages..You’ll start with the fundamentals of?Python 3?programming language, machine learning history, evolution, and the system development frameworks. Key data mining/analysis concepts, such as exploratory analysis, feature dimension reduction, regressions, time series forecasting and their efficient implementation in Scikit-learn are covered as well. You’ll also learn commonly used model diagnostic and tuning techniques. These include optimal probability cutoff point for class creation, variance, bias, bagging, boosting, ensemble voting, grid search, random search,?Bayesian optimization, and?the noise reduction technique for IoT data.?. .Finally, you’ll review advanced text mining techniques, recommender systems, neural networks, deep learning, reinforcement learning techniques and their implementation.
出版日期Book 2019Latest edition
關(guān)鍵詞Machine Learning; Python; Scikit-Learn; Model Tuning; Text Mining; Neural Networks; Deep Learning; Recommen
版次2
doihttps://doi.org/10.1007/978-1-4842-4947-5
isbn_softcover978-1-4842-4946-8
isbn_ebook978-1-4842-4947-5
copyright Manohar Swamynathan 2019
The information of publication is updating

書目名稱Mastering Machine Learning with Python in Six Steps影響因子(影響力)




書目名稱Mastering Machine Learning with Python in Six Steps影響因子(影響力)學(xué)科排名




書目名稱Mastering Machine Learning with Python in Six Steps網(wǎng)絡(luò)公開(kāi)度




書目名稱Mastering Machine Learning with Python in Six Steps網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Mastering Machine Learning with Python in Six Steps被引頻次




書目名稱Mastering Machine Learning with Python in Six Steps被引頻次學(xué)科排名




書目名稱Mastering Machine Learning with Python in Six Steps年度引用




書目名稱Mastering Machine Learning with Python in Six Steps年度引用學(xué)科排名




書目名稱Mastering Machine Learning with Python in Six Steps讀者反饋




書目名稱Mastering Machine Learning with Python in Six Steps讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:28:58 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:40:23 | 只看該作者
Step 3: Fundamentals of Machine Learning,This chapter focuses on different algorithms of supervised and unsupervised machine learning (ML) using two key Python packages.
地板
發(fā)表于 2025-3-22 08:22:15 | 只看該作者
5#
發(fā)表于 2025-3-22 09:30:03 | 只看該作者
6#
發(fā)表于 2025-3-22 13:31:39 | 只看該作者
7#
發(fā)表于 2025-3-22 19:47:36 | 只看該作者
Step 1: Getting Started in Python 3,and the key concepts around Python programming to get you started with basics. This chapter is an additional step or the prerequisite step for nonPython users. If you are already comfortable with Python, I would recommend you to quickly run through the contents to ensure you are aware of all the key concepts.
8#
發(fā)表于 2025-3-22 23:34:54 | 只看該作者
9#
發(fā)表于 2025-3-23 02:35:21 | 只看該作者
10#
發(fā)表于 2025-3-23 08:25:54 | 只看該作者
Manohar Swamynathanche Dinge, Stoffe oder Substanzen ein für alle Mal sich selbst überlassen zu k?nnen. Zugleich erfordern die entsprechenden Ablagerungsstellen erhebliche Aufmerksamkeit und technischen Aufwand. Auch wenn die Deponie ihre Legitimation aus der Annahme zieht, den auf ihr angesammelten Müll zu domestizie
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 22:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙岩市| 曲松县| 香港 | 繁昌县| 上杭县| 赞皇县| 南阳市| 山丹县| 湘潭县| 太谷县| 汝城县| 南京市| 湟中县| 武隆县| 宁城县| 绥阳县| 迁安市| 黄梅县| 伊宁县| 高淳县| 广水市| 舟曲县| 庄河市| 廉江市| 石泉县| 巨鹿县| 永定县| 泸溪县| 鹤庆县| 张家川| 杭州市| 阿巴嘎旗| 巴青县| 八宿县| 筠连县| 万全县| 肃北| 尼木县| 新龙县| 泸州市| 灌阳县|