找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Markov Random Field Modeling in Image Analysis; Stan Z. Li Book 2009Latest edition Springer-Verlag London 2009 Bayesian modeling.Bayesian

[復(fù)制鏈接]
查看: 10554|回復(fù): 46
樓主
發(fā)表于 2025-3-21 16:24:24 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Markov Random Field Modeling in Image Analysis
編輯Stan Z. Li
視頻videohttp://file.papertrans.cn/625/624645/624645.mp4
概述Comprehensive coverage over a broad range of Markov Random Field Theory.Provides the most recent advances in the field.Includes supplementary material:
叢書(shū)名稱(chēng)Advances in Computer Vision and Pattern Recognition
圖書(shū)封面Titlebook: Markov Random Field Modeling in Image Analysis;  Stan Z. Li Book 2009Latest edition Springer-Verlag London 2009 Bayesian modeling.Bayesian
描述.Markov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpretation. It enables us to develop optimal vision algorithms systematically when used with optimization principles. This book presents a comprehensive study on the use of MRFs for solving computer vision problems. Various vision models are presented in a unified framework, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation. This third edition includes the most recent advances and has new and expanded sections on topics such as: Bayesian Network; Discriminative Random Fields; Strong Random Fields; Spatial-Temporal Models; Learning MRF for Classification. This book is an excellent reference for researchers working in computer vision, image processing, statistical pattern recognition and applications of MRFs. It is also suitable as a text for advanced courses in these areas..
出版日期Book 2009Latest edition
關(guān)鍵詞Bayesian modeling; Bayesian network; Computer Vision; Computer vison; Markov random field; Optimization; S
版次3
doihttps://doi.org/10.1007/978-1-84800-279-1
isbn_softcover978-1-84996-767-9
isbn_ebook978-1-84800-279-1Series ISSN 2191-6586 Series E-ISSN 2191-6594
issn_series 2191-6586
copyrightSpringer-Verlag London 2009
The information of publication is updating

書(shū)目名稱(chēng)Markov Random Field Modeling in Image Analysis影響因子(影響力)




書(shū)目名稱(chēng)Markov Random Field Modeling in Image Analysis影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Markov Random Field Modeling in Image Analysis網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Markov Random Field Modeling in Image Analysis網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Markov Random Field Modeling in Image Analysis被引頻次




書(shū)目名稱(chēng)Markov Random Field Modeling in Image Analysis被引頻次學(xué)科排名




書(shū)目名稱(chēng)Markov Random Field Modeling in Image Analysis年度引用




書(shū)目名稱(chēng)Markov Random Field Modeling in Image Analysis年度引用學(xué)科排名




書(shū)目名稱(chēng)Markov Random Field Modeling in Image Analysis讀者反饋




書(shū)目名稱(chēng)Markov Random Field Modeling in Image Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:56:40 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:58:28 | 只看該作者
High-Level MRF Models,s of such features are usually irregular, and hence the problems fall into categories LP3 and LP4. In this chapter, we present MAP-MRF formulations for solving these problems..We begin with a study on the problem of object matching and recognition under contextual constraints. An MAP-MRF model is th
地板
發(fā)表于 2025-3-22 07:11:42 | 只看該作者
5#
發(fā)表于 2025-3-22 12:25:09 | 只看該作者
MRF Model with Robust Statistics,he least squares (LS) error estimates can be arbitrarily wrong when outliers are present in the data. A robust procedure is aimed at making solutions insensitive to the influence of outliers. That is, its performance should be good with all-inlier data and should deteriorate gracefully with increasi
6#
發(fā)表于 2025-3-22 16:21:23 | 只看該作者
7#
發(fā)表于 2025-3-22 19:08:34 | 只看該作者
Parameter Estimation in Optimal Object Recognition, successfully. A common practice is to choose such parameters manually on an ad hoc basis, which is a disadvantage. This chapter1 presents a theory of parameter estimation for optimization-based object recognition where the optimal solution is defined as the global minimum of an energy function. The
8#
發(fā)表于 2025-3-22 22:14:22 | 只看該作者
9#
發(fā)表于 2025-3-23 01:51:23 | 只看該作者
10#
發(fā)表于 2025-3-23 09:14:38 | 只看該作者
physicians and/or and scientists involved in the study of prWithout metastasis, prostate cancer would be both tolerable and treatable. The high incidence of indolent and organ confined disease is testament to this sweeping generalisation. Equally, if molecular markers of metastatic spread can be ide
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 12:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
花莲县| 杨浦区| 盐亭县| 墨竹工卡县| 博爱县| 桃江县| 玉田县| 伽师县| 淳化县| 盐城市| 渝北区| 酉阳| 平安县| 徐闻县| 东丽区| 西华县| 定州市| 景德镇市| 南投县| 邹城市| 二手房| 巴中市| 朝阳县| 望城县| 泽州县| 海林市| 夹江县| 且末县| 清徐县| 津南区| 台东市| 桃园市| 兴宁市| 郑州市| 陆川县| 墨竹工卡县| 乌审旗| 赣榆县| 阜城县| 乐平市| 临安市|