找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Markov Processes for Stochastic Modeling; Masaaki Kijima Book 1997 M. Kijima 1997 Markov chain.Markov process.Parameter.algebra.modeling

[復(fù)制鏈接]
查看: 34713|回復(fù): 40
樓主
發(fā)表于 2025-3-21 17:10:45 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Markov Processes for Stochastic Modeling
編輯Masaaki Kijima
視頻videohttp://file.papertrans.cn/625/624640/624640.mp4
圖書封面Titlebook: Markov Processes for Stochastic Modeling;  Masaaki Kijima Book 1997 M. Kijima 1997 Markov chain.Markov process.Parameter.algebra.modeling
描述This book presents an algebraic development of the theory of countable state space Markov chains with discrete- and continuous-time parameters. A Markov chain is a stochastic process characterized by the Markov prop- erty that the distribution of future depends only on the current state, not on the whole history. Despite its simple form of dependency, the Markov property has enabled us to develop a rich system of concepts and theorems and to derive many results that are useful in applications. In fact, the areas that can be modeled, with varying degrees of success, by Markov chains are vast and are still expanding. The aim of this book is a discussion of the time-dependent behavior, called the transient behavior, of Markov chains. From the practical point of view, when modeling a stochastic system by a Markov chain, there are many instances in which time-limiting results such as stationary distributions have no meaning. Or, even when the stationary distribution is of some importance, it is often dangerous to use the stationary result alone without knowing the transient behavior of the Markov chain. Not many books have paid much attention to this topic, despite its obvious importanc
出版日期Book 1997
關(guān)鍵詞Markov chain; Markov process; Parameter; algebra; modeling
版次1
doihttps://doi.org/10.1007/978-1-4899-3132-0
isbn_softcover978-0-412-60660-1
isbn_ebook978-1-4899-3132-0
copyrightM. Kijima 1997
The information of publication is updating

書目名稱Markov Processes for Stochastic Modeling影響因子(影響力)




書目名稱Markov Processes for Stochastic Modeling影響因子(影響力)學(xué)科排名




書目名稱Markov Processes for Stochastic Modeling網(wǎng)絡(luò)公開度




書目名稱Markov Processes for Stochastic Modeling網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Markov Processes for Stochastic Modeling被引頻次




書目名稱Markov Processes for Stochastic Modeling被引頻次學(xué)科排名




書目名稱Markov Processes for Stochastic Modeling年度引用




書目名稱Markov Processes for Stochastic Modeling年度引用學(xué)科排名




書目名稱Markov Processes for Stochastic Modeling讀者反饋




書目名稱Markov Processes for Stochastic Modeling讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:00:23 | 只看該作者
Discrete-time Markov chains,This chapter concerns discrete-time Markov chains defined on a finite or denumerably infinite state space .. The Markov chains under consideration are assumed to be homogeneous. We assume without loss of generality that the state space consists of nonnegative integers . = ?0,1,...,.”, where . < ∞ or . = ∞.
板凳
發(fā)表于 2025-3-22 01:46:14 | 只看該作者
地板
發(fā)表于 2025-3-22 07:46:26 | 只看該作者
Review of matrix theory,In this section we discuss nonnegative matrices . = (..), i.e., .. ≥ 0 for all ., in which case we write . ≥ O. If .. > 0 for all ., we write . > O. For two matrices . and ., we write . ≥ . if and only if . ≥ O and . > . if and only if . ? . > O. Throughout this section, we assume that matrices are finite and square.
5#
發(fā)表于 2025-3-22 10:53:38 | 只看該作者
https://doi.org/10.1007/978-1-4899-3132-0Markov chain; Markov process; Parameter; algebra; modeling
6#
發(fā)表于 2025-3-22 14:06:53 | 只看該作者
7#
發(fā)表于 2025-3-22 17:02:24 | 只看該作者
Total positivity,ere are indeed only ‘the tip of the iceberg’. The reader interested in a complete discussion of the theory of total positivity should consult Karlin (1968). Throughout this appendix, ., . and . represent either intervals of the real line . ≡ (?∞, ∞) or a countable or finite set of discrete values along ..
8#
發(fā)表于 2025-3-22 23:25:53 | 只看該作者
Introduction,or ‘chance’. Markov processes are a class of stochastic processes that are distinguished by the Markov property and have many applications in, for example, operations research, biology, engineering, and economics. In this chapter, we introduce some basic concepts of Markov processes.
9#
發(fā)表于 2025-3-23 03:15:49 | 只看該作者
Monotone Markov chains,n matrices. A Markov chain {.. }is said to be increasing (decreasing, respectively) if .. ? .. (.. ? ..) for all n = 0,1, ..., where ? denotes an ordering relation in some stochastic sense, and in either case we call {.. }., or monotone for short. An . is such that, for two Markov chains {.. }and {.
10#
發(fā)表于 2025-3-23 05:50:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
苏州市| 承德市| 韩城市| 什邡市| 苏州市| 南昌县| 江城| 宁陕县| 临海市| 木里| 安龙县| 岢岚县| 安阳县| 江源县| 禹州市| 岗巴县| 迁西县| 明溪县| 株洲市| 昌都县| 甘泉县| 错那县| 遂平县| 楚雄市| 库尔勒市| 洪洞县| 乌恰县| 云林县| 武清区| 大名县| 福贡县| 鄂州市| 九寨沟县| 微山县| 开鲁县| 秦安县| 清远市| 镇江市| 玉屏| 抚顺市| 灌阳县|