找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Markov Models for Handwriting Recognition; Thomas Pl?tz,Gernot A. Fink Book 2011 Thomas Pl?tz 2011 Document Analysis.Handwriting Recogniti

[復(fù)制鏈接]
查看: 12907|回復(fù): 38
樓主
發(fā)表于 2025-3-21 16:35:40 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Markov Models for Handwriting Recognition
編輯Thomas Pl?tz,Gernot A. Fink
視頻videohttp://file.papertrans.cn/625/624630/624630.mp4
概述Introduces the typical architecture of a Markov model-based handwriting recognition system.Describes the essential theoretical concepts behind Markovian models.Provides a thorough review of the soluti
叢書名稱SpringerBriefs in Computer Science
圖書封面Titlebook: Markov Models for Handwriting Recognition;  Thomas Pl?tz,Gernot A. Fink Book 2011 Thomas Pl?tz 2011 Document Analysis.Handwriting Recogniti
描述.Since their first inception, automatic reading systems have evolved substantially, yet the recognition of handwriting remains an open research problem due to its substantial variation in appearance. With the introduction of Markovian models to the field, a promising modeling and recognition paradigm was established for automatic handwriting recognition. However, no standard procedures for building Markov model-based recognizers have yet been established. This text provides a comprehensive overview of the application of Markov models in the field of handwriting recognition, covering both hidden Markov models and Markov-chain or n-gram models. First, the text introduces the typical architecture of a Markov model-based handwriting recognition system, and familiarizes the reader with the essential theoretical concepts behind Markovian models. Then, the text reviews proposed solutions in the literature for open problems in applying Markov model-based approaches to automatic handwriting recognition..
出版日期Book 2011
關(guān)鍵詞Document Analysis; Handwriting Recognition; Hidden Markov Models; Machine Learning; Offline Handwriting
版次1
doihttps://doi.org/10.1007/978-1-4471-2188-6
isbn_softcover978-1-4471-2187-9
isbn_ebook978-1-4471-2188-6Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightThomas Pl?tz 2011
The information of publication is updating

書目名稱Markov Models for Handwriting Recognition影響因子(影響力)




書目名稱Markov Models for Handwriting Recognition影響因子(影響力)學(xué)科排名




書目名稱Markov Models for Handwriting Recognition網(wǎng)絡(luò)公開度




書目名稱Markov Models for Handwriting Recognition網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Markov Models for Handwriting Recognition被引頻次




書目名稱Markov Models for Handwriting Recognition被引頻次學(xué)科排名




書目名稱Markov Models for Handwriting Recognition年度引用




書目名稱Markov Models for Handwriting Recognition年度引用學(xué)科排名




書目名稱Markov Models for Handwriting Recognition讀者反饋




書目名稱Markov Models for Handwriting Recognition讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:16:50 | 只看該作者
General Architecture,tured. From this raw data the relevant document elements (e.g., text lines) need to be segmented. These are then subject to a number of pre-processing steps that aim at reducing the variability in the appearance of the writing by applying a sequence of normalization operations. In order to be proces
板凳
發(fā)表于 2025-3-22 03:40:06 | 只看該作者
地板
發(fā)表于 2025-3-22 08:08:31 | 只看該作者
Markov Model Based Handwriting Recognition,of efficient and robust algorithms for both model training and evaluation. However, in order to build effective handwriting recognition systems based on Markovian models, it is mandatory to tailor the general Markovian recognition framework towards the particular application domain. In this chapter
5#
發(fā)表于 2025-3-22 11:49:29 | 只看該作者
Recognition Systems for Practical Applications,al applications. After the theoretical aspects and key developments in the field have been surveyed, integration aspects and concrete evaluations of recognition capabilities are discussed. The chapter starts with a description of the most relevant data-sets. As usual for all experimental science, ha
6#
發(fā)表于 2025-3-22 14:30:01 | 只看該作者
Discussion,, in this chapter we will first summarize the state of the field, followed by the description of methodological trends and future challenges as they have been identified while analyzing the literature. Since the particular approaches as they were described in the literature are still difficult to co
7#
發(fā)表于 2025-3-22 18:23:51 | 只看該作者
8#
發(fā)表于 2025-3-23 00:00:14 | 只看該作者
9#
發(fā)表于 2025-3-23 02:23:41 | 只看該作者
10#
發(fā)表于 2025-3-23 07:53:28 | 只看該作者
2191-5768 ian models. Then, the text reviews proposed solutions in the literature for open problems in applying Markov model-based approaches to automatic handwriting recognition..978-1-4471-2187-9978-1-4471-2188-6Series ISSN 2191-5768 Series E-ISSN 2191-5776
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 00:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
扶沟县| 镇安县| 佳木斯市| 卢氏县| 仙桃市| 会宁县| 深泽县| 佛教| 通江县| 双峰县| 涿州市| 万源市| 扎囊县| 洞口县| 什邡市| 玛曲县| 长阳| 宕昌县| 白银市| 县级市| 图木舒克市| 宁蒗| 西藏| 赤水市| 修水县| 宁强县| 菏泽市| 宜兰县| 普兰店市| 平江县| 建水县| 海城市| 孟州市| 兴海县| 云霄县| 垫江县| 酒泉市| 汾阳市| 靖江市| 南宁市| 牟定县|