找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Marketing Intelligent Systems Using Soft Computing; Managerial and Resea Jorge Casillas,Francisco J. Martínez-López Book 2010 Springer-Verl

[復制鏈接]
樓主: Coarctation
11#
發(fā)表于 2025-3-23 11:44:32 | 只看該作者
Using Data Fusion to Enrich Customer Databases with Survey Data for Database Marketingn be different though. In real world applications, the number of sources over which this information is fragmented can grow at an even faster rate, resulting in barriers to widespread application of data mining and missed business opportunities. Let us illustrate this paradox with a motivating examp
12#
發(fā)表于 2025-3-23 14:19:48 | 只看該作者
Collective Intelligence in Marketingl customers. With the recent adoption of large-scale, Internet-based information systems, marketing professionals now face large volumes of complex data, including detailed purchase and service transactions, social network links, click streams, blogs, comments and inquiries. While traditional market
13#
發(fā)表于 2025-3-23 19:28:19 | 只看該作者
Predictive Modeling on Multiple Marketing Objectives Using Evolutionary Computationrough the dependent variable of interest. While standard modeling approaches embody single performance objectives, actual marketing decisions often need consideration of multiple performance criteria. Multiple objective problems typically characterize a range of solutions, none of which dominate the
14#
發(fā)表于 2025-3-24 01:54:34 | 只看該作者
15#
發(fā)表于 2025-3-24 02:41:53 | 只看該作者
16#
發(fā)表于 2025-3-24 07:07:52 | 只看該作者
17#
發(fā)表于 2025-3-24 11:48:31 | 只看該作者
Direct Marketing Based on a Distributed Intelligent SystemDirect Marketing has benefited from computational methods to model consumer preferences, and many companies are beginning to explore this strategy to interact with customers. Nevertheless, it is still an open problem how to formulate, distribute and apply surveys to clients, and then gather their re
18#
發(fā)表于 2025-3-24 16:52:18 | 只看該作者
Direct Marketing Modeling Using Evolutionary Bayesian Network Learning Algorithmscovering models represented as Bayesian networks from incomplete databases in the presence of missing values. It combines an evolutionary algorithm with the traditional . algorithm to find better network structures in each iteration round. A data completing method is also presented for the convenie
19#
發(fā)表于 2025-3-24 22:48:36 | 只看該作者
20#
發(fā)表于 2025-3-24 23:22:00 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 08:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
高阳县| 柏乡县| 呼伦贝尔市| 洪雅县| 区。| 安仁县| 白银市| 甘南县| 科技| 屯留县| 云安县| 双城市| 犍为县| 招远市| 鄯善县| 太谷县| 汉川市| 紫云| 江源县| 济源市| 桃园县| 长治市| 德清县| 青阳县| 渑池县| 苏尼特左旗| 新昌县| 闵行区| 诸城市| 阳山县| 吴桥县| 洮南市| 西青区| 苍山县| 延川县| 沁水县| 平山县| 叶城县| 澎湖县| 新竹县| 陕西省|