找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Marine Protists; Diversity and Dynami Susumu Ohtsuka,Toshinobu Suzaki,Fabrice Not Book 2015 Springer Japan 2015 Aquatic ecosystem.Chemosynt

[復(fù)制鏈接]
樓主: 街道
51#
發(fā)表于 2025-3-30 09:13:36 | 只看該作者
Stuart D. Syml annotation is time-consuming and requires specialized expertise. Semi-supervised segmentation methods that leverage both labeled and unlabeled data have shown promise, with contrastive learning emerging as a particularly effective approach. In this paper, we propose a contrastive learning strategy
52#
發(fā)表于 2025-3-30 13:12:07 | 只看該作者
53#
發(fā)表于 2025-3-30 19:54:50 | 只看該作者
Katsunori Kimotols could be leveraged by utilizing either transfer learning or semi-supervised learning on a limited number of strong labels from manual annotation. However, over-fitting could potentially arise due to the small data size. This work develops a dual-branch network to improve segmentation on OOD data
54#
發(fā)表于 2025-3-31 00:23:29 | 只看該作者
Noritoshi Suzuki,Fabrice Notre repetitive and cumbersome, only the largest lesion is identified leaving others of potential importance unmentioned. Automated deep learning-based methods for lesion detection have been proposed in literature to help relieve their tasks with the publicly available DeepLesion dataset (32,735 lesio
55#
發(fā)表于 2025-3-31 04:01:26 | 只看該作者
Yasuhide Nakamura,Noritoshi Suzuki availability of well-labeled data. In practice, it is a great challenge to obtain a large high-quality labeled dataset, especially for the medical image segmentation task, which generally needs pixel-wise labels, and the inaccurate label (noisy label) may significantly degrade the segmentation perf
56#
發(fā)表于 2025-3-31 05:03:55 | 只看該作者
57#
發(fā)表于 2025-3-31 13:12:16 | 只看該作者
Takashi Kamiyamare repetitive and cumbersome, only the largest lesion is identified leaving others of potential importance unmentioned. Automated deep learning-based methods for lesion detection have been proposed in literature to help relieve their tasks with the publicly available DeepLesion dataset (32,735 lesio
58#
發(fā)表于 2025-3-31 16:32:19 | 只看該作者
59#
發(fā)表于 2025-3-31 18:43:06 | 只看該作者
60#
發(fā)表于 2025-3-31 21:54:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 23:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凤翔县| 南木林县| 峡江县| 高州市| 巴南区| 宜宾县| 巴塘县| 犍为县| 封丘县| 宣汉县| 晋州市| 哈密市| 察雅县| 招远市| 南漳县| 霍林郭勒市| 蒙山县| 正定县| 云林县| 南部县| 崇信县| 大宁县| 枝江市| 曲阳县| 达尔| 亳州市| 武川县| 兴城市| 克山县| 亚东县| 出国| 平顺县| 肇庆市| 寿光市| 东乡县| 合肥市| 三原县| 康平县| 长武县| 天峨县| 大悟县|