找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Maple via Calculus; A Tutorial Approach Robert J. Lopez Textbook 1994 Springer Science+Business Media New York 1994 Finite.Interpolation.Ma

[復制鏈接]
樓主: 縮寫
11#
發(fā)表于 2025-3-23 11:10:36 | 只看該作者
,Deriving Simpson’s Rule,Maple’s student package contains a built-in command for Simpson’s Rule for approximate numeric integration and an exploration of the companion built-in Trapezoidal Rule appears in Unit 14. Here, we explore a derivation of Simpson’s Rule.
12#
發(fā)表于 2025-3-23 16:06:26 | 只看該作者
Numerical Integration,The student package contains commands for both the Trapezoidal Rule and Simpson’s Rule. Let’s explore how we might use the trapezoid command to investigate the behavior of the Trapezoidal Rule.
13#
發(fā)表于 2025-3-23 21:23:00 | 只看該作者
Integration by Parts,The companion of . is .. Let’s explore one way Maple can be used to learn about integration by parts. This approach is predicated on the belief that real integrals are never actually done “by parts” because in real life such integrals are found in tables of integrals.
14#
發(fā)表于 2025-3-24 00:27:44 | 只看該作者
15#
發(fā)表于 2025-3-24 03:20:42 | 只看該作者
http://image.papertrans.cn/m/image/623734.jpg
16#
發(fā)表于 2025-3-24 09:12:45 | 只看該作者
978-0-8176-3771-2Springer Science+Business Media New York 1994
17#
發(fā)表于 2025-3-24 13:57:39 | 只看該作者
18#
發(fā)表于 2025-3-24 16:43:45 | 只看該作者
Improper Integrals,ral that can be easily misunderstood. In fact, the following integral is called an improper integral of the second kind in the calculus literature because the integrand becomes unbounded on the interior of the interval of integration.
19#
發(fā)表于 2025-3-24 21:26:10 | 只看該作者
20#
發(fā)表于 2025-3-25 02:04:19 | 只看該作者
Integration by Parts Twice,ssic integral . Typically, when the realization first hits that Maple should be able to do the repeated integration by parts, the focus becomes “can I be clever enough to get Maple to do this” or “is Maple powerful enough to do it.”
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 18:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
盈江县| 长治市| 溧阳市| 东城区| 当雄县| 吉安市| 天峨县| 铁力市| 松桃| 同江市| 颍上县| 镇巴县| 宁波市| 靖宇县| 磴口县| 白城市| 清新县| 花莲市| 古丈县| 大石桥市| 丹棱县| 河曲县| 中阳县| 保定市| 平乐县| 遵义市| 永仁县| 东海县| 泰州市| 南澳县| 孟村| 涿鹿县| 张家口市| 牟定县| 绍兴市| 汝阳县| 峨眉山市| 宜都市| 奉贤区| 陆河县| 三台县|