找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Maple in Mathematics Education and Research; Third Maple Conferen Jürgen Gerhard,Ilias Kotsireas Conference proceedings 2020 Springer Natur

[復(fù)制鏈接]
樓主: Racket
31#
發(fā)表于 2025-3-27 00:10:28 | 只看該作者
Detecting Singularities Using the PowerSeries Libraryomplished in two steps: first performing the Lyapunov-Schmidt reduction to reduce the dimension of the state variables in the original smooth map and then applying singularity theory techniques to the resulting reduced smooth map. In this paper, we address an important application of the so-called E
32#
發(fā)表于 2025-3-27 03:21:47 | 只看該作者
A Maple Package for the Symbolic Computation of Drazin Inverse Matrices with Multivariate Transcendeis paper is framed in the computational part..Many authors have addressed the problem of computing Drazin inverses of matrices whose entries belong to different domains: complex numbers, polynomial entries, rational functions, formal Laurent series, meromorphic functions. Furthermore, symbolic techn
33#
發(fā)表于 2025-3-27 06:29:27 | 只看該作者
A Poly-algorithmic Quantifier Elimination Package in Maples. This problem is known to be worst case time complexity worst case doubly exponential in the number of variables. As such implementations are sometimes seen as undesirable to use, despite problems arising in algebraic geometry and even economics lending themselves to formulations as QE problems. T
34#
發(fā)表于 2025-3-27 09:51:35 | 只看該作者
35#
發(fā)表于 2025-3-27 13:58:20 | 只看該作者
36#
發(fā)表于 2025-3-27 18:02:59 | 只看該作者
Using Maple to Make Manageable Matricesors or a matrix using Householder transformations. We present a method for generating matrices which, when subject to using Householder transformations, require only rational computations and give rational results. The pedagogical problem addressed is that numerical examples in this topic will usual
37#
發(fā)表于 2025-3-28 01:50:25 | 只看該作者
38#
發(fā)表于 2025-3-28 02:38:07 | 只看該作者
39#
發(fā)表于 2025-3-28 07:41:23 | 只看該作者
40#
發(fā)表于 2025-3-28 12:42:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 10:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
个旧市| 抚州市| 临沭县| 容城县| 昌乐县| 平乡县| 白城市| 于都县| 宁德市| 唐山市| 林周县| 织金县| 遂昌县| 广昌县| 新和县| 西华县| 巴里| 调兵山市| 克山县| 宣武区| 会理县| 隆化县| 衡水市| 海兴县| 牙克石市| 延边| 宁波市| 横山县| 兴化市| 大丰市| 惠来县| 乌什县| 苗栗市| 苏州市| 大理市| 清河县| 通榆县| 霍林郭勒市| 巩义市| 平南县| 乐都县|