找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Manifolds, Vector Fields, and Differential Forms; An Introduction to D Gal Gross,Eckhard Meinrenken Textbook 2023 The Editor(s) (if applica

[復制鏈接]
樓主: 表范圍
11#
發(fā)表于 2025-3-23 13:18:59 | 只看該作者
12#
發(fā)表于 2025-3-23 16:54:06 | 只看該作者
Gal Gross,Eckhard Meinrenkeno Nuprl in order to prove a version of Brouwer’s continuity principle, as well as choice sequences in order to prove truncated versions of the axiom of choice and of Brouwer’s bar induction principle. This paper illustrate the process of extending Nuprl with versions of the axiom of choice.
13#
發(fā)表于 2025-3-23 21:10:25 | 只看該作者
14#
發(fā)表于 2025-3-24 01:26:52 | 只看該作者
15#
發(fā)表于 2025-3-24 04:21:54 | 只看該作者
16#
發(fā)表于 2025-3-24 07:50:01 | 只看該作者
17#
發(fā)表于 2025-3-24 12:23:53 | 只看該作者
Manifolds,One of the goals of this book is to develop the theory of manifolds in intrinsic terms, although we may occasionally use immersions or embeddings into Euclidean space in order to illustrate concepts. In physics terminology, we will formulate the theory of manifolds in terms that are “manifestly coordinate-free.”
18#
發(fā)表于 2025-3-24 18:28:26 | 只看該作者
Smooth Maps,A real-valued function on an open subset . is called . .?∈?. if it is infinitely differentiable on an open neighborhood of .. It is called . . if it is smooth at all points of .. The notion of smooth functions on open subsets of Euclidean spaces carries over to manifolds: A function is smooth if its expression in local coordinates is smooth.
19#
發(fā)表于 2025-3-24 21:04:50 | 只看該作者
Submanifolds,Let . be a manifold of dimension .. We will define a .-dimensional submanifold .???. to be a subset that looks locally like ., regarded as the coordinate subspace defined by ..?=???=?..?=?0.
20#
發(fā)表于 2025-3-25 03:12:59 | 只看該作者
Vector Fields,A vector field on a manifold may be regarded as a family of tangent vectors ..?∈?... for .?∈?., depending smoothly on the base points .?∈?.. One way of making precise what is meant by “depending smoothly” is the following.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 08:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
铜梁县| 康马县| 岳西县| 建平县| 东阳市| 漳浦县| 如东县| 马山县| 基隆市| 沽源县| 顺义区| 吴桥县| 固安县| 怀安县| 会东县| 怀安县| 当阳市| 宁国市| 徐州市| 康平县| 海门市| 佛坪县| 玉林市| 侯马市| 怀安县| 信宜市| 乌拉特后旗| 通州市| 临邑县| 长岭县| 江源县| 商河县| 尖扎县| 九江市| 西丰县| 盖州市| 孟津县| 开鲁县| 珠海市| 芜湖市| 湖北省|