找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Manifolds, Sheaves, and Cohomology; Torsten Wedhorn Textbook 2016 Springer Fachmedien Wiesbaden 2016 Bundles.Cohomology.Lie Groups.Manifol

[復(fù)制鏈接]
樓主: TOUT
51#
發(fā)表于 2025-3-30 11:42:16 | 只看該作者
52#
發(fā)表于 2025-3-30 13:15:37 | 只看該作者
Torsten Wedhorn to the optimization of insurance contracts. Good knowledge of basic probability and statistics as well as of basic general mathematics is a prerequisite for comfortably reading and working with the present vol978-3-642-43016-9978-3-642-33590-7Series ISSN 1431-8598 Series E-ISSN 2197-1773
53#
發(fā)表于 2025-3-30 16:48:08 | 只看該作者
2509-9310 r master students in mathematics.Includes supplementary mate.This book explains techniques that are essential in almost all branches of modern geometry such as algebraic geometry, complex geometry, or non-archimedian geometry. It uses the most accessible case, real and complex manifolds, as a model.
54#
發(fā)表于 2025-3-30 22:39:38 | 只看該作者
55#
發(fā)表于 2025-3-31 04:39:56 | 只看該作者
56#
發(fā)表于 2025-3-31 06:22:24 | 只看該作者
Cohomology of Constant Sheaves, sheaves for continuous maps between arbitrary topological spaces in Sect.?11.3. We conclude the chapter with some easy applications...: Let . always be a?commutative ring and let . be a?topological space.
57#
發(fā)表于 2025-3-31 11:32:47 | 只看該作者
Appendix D: Homological Algebra,?central notion for the definition of cohomology: injective modules and K-injective complexes. Until then all notions were explained for modules over a?ring, but in fact they make sense much more generally in arbitrary abelian categories. This is explained in the last section of this appendix.
58#
發(fā)表于 2025-3-31 16:56:16 | 只看該作者
59#
發(fā)表于 2025-3-31 21:10:31 | 只看該作者
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 21:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灵川县| 于田县| 林州市| 锡林浩特市| 东丰县| 旌德县| 德庆县| 扎赉特旗| 岱山县| 长兴县| 台北市| 陵水| 永昌县| 张家港市| 栾川县| 临武县| 定远县| 佛山市| 香格里拉县| 汤阴县| 利辛县| 秦皇岛市| 大冶市| 大关县| 台山市| 姚安县| 金秀| 天镇县| 云浮市| 乐平市| 宁武县| 广宁县| 辽宁省| 荥经县| 贵南县| 巴塘县| 周至县| 方正县| 曲阜市| 义乌市| 申扎县|