找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Manifolds with Cusps of Rank One; Spectral Theory and Werner Müller Book 1987 Springer-Verlag Berlin Heidelberg 1987 Signatur.Spinor.deriv

[復(fù)制鏈接]
查看: 12565|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:02:34 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Manifolds with Cusps of Rank One
副標(biāo)題Spectral Theory and
編輯Werner Müller
視頻videohttp://file.papertrans.cn/624/623394/623394.mp4
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Manifolds with Cusps of Rank One; Spectral Theory and  Werner Müller Book 1987 Springer-Verlag Berlin Heidelberg 1987 Signatur.Spinor.deriv
描述The manifolds investigated in this monograph are generalizations of (XX)-rank one locally symmetric spaces. In the first part of the book the author develops spectral theory for the differential Laplacian operator associated to the so-called generalized Dirac operators on manifolds with cusps of rank one. This includes the case of spinor Laplacians on (XX)-rank one locally symmetric spaces. The time-dependent approach to scattering theory is taken to derive the main results about the spectral resolution of these operators. The second part of the book deals with the derivation of an index formula for generalized Dirac operators on manifolds with cusps of rank one. This index formula is used to prove a conjecture of Hirzebruch concerning the relation of signature defects of cusps of Hilbert modular varieties and special values of L-series. This book is intended for readers working in the field of automorphic forms and analysis on non-compact Riemannian manifolds, and assumes a knowledge of PDE, scattering theory and harmonic analysis on semisimple Lie groups.
出版日期Book 1987
關(guān)鍵詞Signatur; Spinor; derivation; manifold
版次1
doihttps://doi.org/10.1007/BFb0077660
isbn_softcover978-3-540-17696-1
isbn_ebook978-3-540-47762-4Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 1987
The information of publication is updating

書目名稱Manifolds with Cusps of Rank One影響因子(影響力)




書目名稱Manifolds with Cusps of Rank One影響因子(影響力)學(xué)科排名




書目名稱Manifolds with Cusps of Rank One網(wǎng)絡(luò)公開度




書目名稱Manifolds with Cusps of Rank One網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Manifolds with Cusps of Rank One被引頻次




書目名稱Manifolds with Cusps of Rank One被引頻次學(xué)科排名




書目名稱Manifolds with Cusps of Rank One年度引用




書目名稱Manifolds with Cusps of Rank One年度引用學(xué)科排名




書目名稱Manifolds with Cusps of Rank One讀者反饋




書目名稱Manifolds with Cusps of Rank One讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:16:02 | 只看該作者
Manifolds with Cusps of Rank One978-3-540-47762-4Series ISSN 0075-8434 Series E-ISSN 1617-9692
板凳
發(fā)表于 2025-3-22 02:04:20 | 只看該作者
Lecture Notes in Mathematicshttp://image.papertrans.cn/m/image/623394.jpg
地板
發(fā)表于 2025-3-22 07:43:31 | 只看該作者
https://doi.org/10.1007/BFb0077660Signatur; Spinor; derivation; manifold
5#
發(fā)表于 2025-3-22 10:12:21 | 只看該作者
Book 1987evelops spectral theory for the differential Laplacian operator associated to the so-called generalized Dirac operators on manifolds with cusps of rank one. This includes the case of spinor Laplacians on (XX)-rank one locally symmetric spaces. The time-dependent approach to scattering theory is take
6#
發(fā)表于 2025-3-22 14:07:59 | 只看該作者
7#
發(fā)表于 2025-3-22 18:48:26 | 只看該作者
8#
發(fā)表于 2025-3-23 00:18:43 | 只看該作者
9#
發(fā)表于 2025-3-23 03:35:57 | 只看該作者
10#
發(fā)表于 2025-3-23 07:39:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 03:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和龙市| 五常市| 邯郸市| 上蔡县| 称多县| 皋兰县| 灵台县| 三穗县| 永春县| 襄垣县| 梁平县| 全椒县| 扎囊县| 宝清县| 博白县| 鹿泉市| 兴安县| 唐山市| 砀山县| 平昌县| 西青区| 修水县| 申扎县| 和林格尔县| 水城县| 城市| 高密市| 比如县| 道真| 平遥县| 万载县| 青阳县| 咸丰县| 桐梓县| 溆浦县| 龙川县| 贡嘎县| 都江堰市| 新和县| 吴堡县| 甘谷县|