找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Managing Intermittent Demand; Torben Engelmeyer Book 2016 Springer Fachmedien Wiesbaden 2016 Logistik.Langsamdreher.Optimierung.Prognose.B

[復(fù)制鏈接]
樓主: 小巷
11#
發(fā)表于 2025-3-23 13:26:06 | 只看該作者
Introduction,roduction changed the view on inventories from assets, which convert to cash, to pure cost drivers. With an increasing availability of data, concepts like Efficient Consumer Response and Predictive Analytics resulted in the need for optimized decisions based on uncertain demand information.
12#
發(fā)表于 2025-3-23 14:22:13 | 只看該作者
Inventory Managements are minimal. It is a crucial function in most companies, and in general it cannot be separated from other functions. For example, the optimal inventory policy will certainly depend on promotion campaigns conducted by the marketing department.
13#
發(fā)表于 2025-3-23 19:42:38 | 只看該作者
14#
發(fā)表于 2025-3-24 02:03:35 | 只看該作者
Conclusiond the forecast model. On the one hand, major efforts are made to consider all the features of the demand series to produce the most accurate forecasts. On the other hand, the majority of inventory frameworks are accompanied by rigid stochastic assumptions, such as Gaussian or gamma distributed lead
15#
發(fā)表于 2025-3-24 03:56:11 | 只看該作者
Book 2016model combinations. By using the consistent approach, the mean inventory level is lowered whereas the service level is increased. Additionally, a modern multi-criteria inventory classification scheme is presented to distinguish different demand series clusters.?.
16#
發(fā)表于 2025-3-24 07:27:00 | 只看該作者
Book 2016cast-based inventory model. This new model is based on the prediction of the future probability distribution by assuming an integer-valued autoregressive process as demand process. The developed algorithms can be used to identify, estimate, and predict the demand as well as optimize the inventory de
17#
發(fā)表于 2025-3-24 10:45:03 | 只看該作者
entory costs by combining the forecast and inventory model into one consistent forecast-based inventory model. This new model is based on the prediction of the future probability distribution by assuming an integer-valued autoregressive process as demand process. The developed algorithms can be used
18#
發(fā)表于 2025-3-24 17:33:40 | 只看該作者
19#
發(fā)表于 2025-3-24 22:52:25 | 只看該作者
20#
發(fā)表于 2025-3-25 02:18:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 17:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通榆县| 天峻县| 怀来县| 洛阳市| 连云港市| 湾仔区| 宜章县| 大厂| 万年县| 米泉市| 明溪县| 师宗县| 广德县| 年辖:市辖区| 龙门县| 芮城县| 宁南县| 怀安县| 庄河市| 沾化县| 崇左市| 通山县| 府谷县| 柳州市| 湛江市| 雷波县| 凯里市| 安乡县| 南漳县| 怀化市| 浠水县| 永丰县| 舟山市| 黄山市| 当涂县| 甘南县| 常州市| 高阳县| 黄大仙区| 南充市| 四川省|