找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Managing Distributed Cloud Applications and Infrastructure; A Self-Optimising Ap Theo Lynn,John G. Mooney,Keith A. Ellis Book‘‘‘‘‘‘‘‘ 2020

[復(fù)制鏈接]
查看: 9375|回復(fù): 40
樓主
發(fā)表于 2025-3-21 16:12:03 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Managing Distributed Cloud Applications and Infrastructure
副標(biāo)題A Self-Optimising Ap
編輯Theo Lynn,John G. Mooney,Keith A. Ellis
視頻videohttp://file.papertrans.cn/623/622993/622993.mp4
概述Explores the use of novel technologies in reliable capacity provisioning across distributed clouds.Presents a state-of-the-art approach and reference model for reliable capacity provisioning in distri
叢書名稱Palgrave Studies in Digital Business & Enabling Technologies
圖書封面Titlebook: Managing Distributed Cloud Applications and Infrastructure; A Self-Optimising Ap Theo Lynn,John G. Mooney,Keith A. Ellis Book‘‘‘‘‘‘‘‘ 2020
描述.The emergence of the Internet of Things (IoT), combined with greater heterogeneity not only online in cloud computing architectures but across the cloud-to-edge continuum, is introducing new challenges for managing applications and infrastructure across this continuum. The scale and complexity is simply so complex that it is no longer realistic for IT teams to manually foresee the potential issues and manage the dynamism and dependencies across an increasing inter-dependent chain of service provision.?.This Open Access Pivot explores these challenges and offers a solution for the intelligent and reliable management of physical infrastructure and the optimal placement of applications for the provision of services on distributed clouds. This book provides a conceptual reference model for reliable capacity provisioning for distributed clouds and discusses how data analytics and machine learning, application and infrastructure optimization, and simulation can deliver qualityof service requirements cost-efficiently in this complex feature space. These are illustrated through a series of case studies in cloud computing, telecommunications, big data analytics, and smart cities.?...
出版日期Book‘‘‘‘‘‘‘‘ 2020
關(guān)鍵詞Analytics Models; Data Acquisition; Application Optimisation; Infrastructure; Distributed Clouds; digital
版次1
doihttps://doi.org/10.1007/978-3-030-39863-7
isbn_ebook978-3-030-39863-7Series ISSN 2662-1282 Series E-ISSN 2662-1290
issn_series 2662-1282
copyrightThe Editor(s) (if applicable) and The Author(s) 2020
The information of publication is updating

書目名稱Managing Distributed Cloud Applications and Infrastructure影響因子(影響力)




書目名稱Managing Distributed Cloud Applications and Infrastructure影響因子(影響力)學(xué)科排名




書目名稱Managing Distributed Cloud Applications and Infrastructure網(wǎng)絡(luò)公開度




書目名稱Managing Distributed Cloud Applications and Infrastructure網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Managing Distributed Cloud Applications and Infrastructure被引頻次




書目名稱Managing Distributed Cloud Applications and Infrastructure被引頻次學(xué)科排名




書目名稱Managing Distributed Cloud Applications and Infrastructure年度引用




書目名稱Managing Distributed Cloud Applications and Infrastructure年度引用學(xué)科排名




書目名稱Managing Distributed Cloud Applications and Infrastructure讀者反饋




書目名稱Managing Distributed Cloud Applications and Infrastructure讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:13:08 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:24:40 | 只看該作者
Application Optimisation: Workload Prediction and Autonomous Autoscaling of Distributed Cloud Applils that build on them. Contributions in modelling, characterisation, and autoscaling of applications, as well as prediction and generation of workloads, are presented and discussed in the context of optimisation of distributed cloud applications operating in complex heterogeneous resource environments.
地板
發(fā)表于 2025-3-22 07:13:26 | 只看該作者
RECAP Data Acquisition and Analytics Methodology,chine learning models from this data. These models are then used to identify relevant features and forecast future values, and thus inform run-time planning, decision making, and optimisation support at both the infrastructure and application levels. We conclude the chapter with an overview of RECAP data visualisation approaches.
5#
發(fā)表于 2025-3-22 08:47:03 | 只看該作者
Towards an Architecture for Reliable Capacity Provisioning for Distributed Clouds,s. In addition, the major design concepts informing its design—namely separation of concerns, model-centricism, modular design, and machine learning and artificial intelligence for IT operations—are also discussed.
6#
發(fā)表于 2025-3-22 13:11:26 | 只看該作者
7#
發(fā)表于 2025-3-22 20:56:12 | 只看該作者
8#
發(fā)表于 2025-3-23 00:44:38 | 只看該作者
RECAP Data Acquisition and Analytics Methodology,nfrastructure for the acquisition and processing of data from applications and systems, and explains the methodology used to derive statistical and machine learning models from this data. These models are then used to identify relevant features and forecast future values, and thus inform run-time pl
9#
發(fā)表于 2025-3-23 05:10:27 | 只看該作者
Application Optimisation: Workload Prediction and Autonomous Autoscaling of Distributed Cloud Appliinfrastructure and application topologies, workload arrival and propagation patterns, and the predictability and variations of user behaviour. This chapter outlines the RECAP approach to application optimisation and presents its framework for joint modelling of applications, workloads, and the propa
10#
發(fā)表于 2025-3-23 08:30:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 17:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
逊克县| 景泰县| 六盘水市| 平罗县| 阿拉善左旗| 卢龙县| 剑川县| 墨竹工卡县| 平果县| 南雄市| 夏河县| 杭锦旗| 台前县| 三台县| 江油市| 新密市| 万年县| 青神县| 富宁县| 五峰| 墨江| 囊谦县| 留坝县| 盐津县| 遂溪县| 连江县| 宣武区| 华阴市| 遵义市| 漳浦县| 高平市| 昌江| 招远市| 温泉县| 隆安县| 玛纳斯县| 忻城县| 阜新| 邳州市| 治多县| 福海县|