找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Management of Nutritional and Metabolic Complications of Bariatric Surgery; Aparna Govil Bhasker,Nimisha Kantharia,Miloni Shah Book 2021 S

[復制鏈接]
樓主: 浮標
41#
發(fā)表于 2025-3-28 16:35:03 | 只看該作者
42#
發(fā)表于 2025-3-28 22:37:13 | 只看該作者
43#
發(fā)表于 2025-3-29 02:43:40 | 只看該作者
44#
發(fā)表于 2025-3-29 04:02:53 | 只看該作者
45#
發(fā)表于 2025-3-29 07:57:29 | 只看該作者
Mariam Lakdawala,Miloni Shah Sancheti,Nimisha Kantharia,Aparna Govil Bhaskere author develops spectral theory for the differential Laplacian operator associated to the so-called generalized Dirac operators on manifolds with cusps of rank one. This includes the case of spinor Laplacians on (XX)-rank one locally symmetric spaces. The time-dependent approach to scattering theo
46#
發(fā)表于 2025-3-29 14:17:15 | 只看該作者
Almino Cardoso Ramos,Hugo V. Coca Jimenez Carraso,Eduardo Lemos De Souza Bastose author develops spectral theory for the differential Laplacian operator associated to the so-called generalized Dirac operators on manifolds with cusps of rank one. This includes the case of spinor Laplacians on (XX)-rank one locally symmetric spaces. The time-dependent approach to scattering theo
47#
發(fā)表于 2025-3-29 18:52:26 | 只看該作者
48#
發(fā)表于 2025-3-29 23:18:16 | 只看該作者
Sarfaraz Baig,Pallawi Priya,Manjari Agarwale author develops spectral theory for the differential Laplacian operator associated to the so-called generalized Dirac operators on manifolds with cusps of rank one. This includes the case of spinor Laplacians on (XX)-rank one locally symmetric spaces. The time-dependent approach to scattering theo
49#
發(fā)表于 2025-3-30 00:01:47 | 只看該作者
50#
發(fā)表于 2025-3-30 05:11:05 | 只看該作者
Associated Co-morbid Conditions of Clinically Severe Obesity,not only in affluent societies but also in developing countries. It is associated with higher mortality and this is due to the great burden of its associated co-morbidities. These range from impaired glucose tolerance and type 2 diabetes mellitus, heart disease, dyslipidemia, cerebrovascular disease
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 14:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
盘锦市| 关岭| 桓仁| 博湖县| 通江县| 周至县| 阜新市| 航空| 衡水市| 山阳县| 山阳县| 疏附县| 舒兰市| 沙坪坝区| 兴宁市| 运城市| 出国| 陈巴尔虎旗| 四平市| 威宁| 田东县| 云和县| 平泉县| 水富县| 桐柏县| 隆尧县| 罗定市| 游戏| 高青县| 普兰县| 克东县| 黄平县| 江西省| 清丰县| 永川市| 卫辉市| 石首市| 永城市| 兰西县| 忻州市| 中江县|