找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Man-Machine Speech Communication; 18th National Confer Jia Jia,Zhenhua Ling,Zixing Zhang Conference proceedings 2024 The Editor(s) (if appl

[復(fù)制鏈接]
樓主: DUCT
31#
發(fā)表于 2025-3-26 21:25:09 | 只看該作者
,Joint Speech and?Noise Estimation Using SNR-Adaptive Target Learning for?Deep-Learning-Based Speeche estimation network and validate the adaptability of the target learning strategy with the noise prediction branch. We demonstrate the effectiveness of our proposed method on a public benchmark, achieving a significant relative word error rate (WER) reduction of approximately 37% compared to the WER results obtained from unprocessed noisy speech.
32#
發(fā)表于 2025-3-27 01:38:40 | 只看該作者
,Accent-VITS: Accent Transfer for?End-to-End TTS,e disentanglement of accent and speaker timbre becomes be more stable and effective. Experiments on multi-accent and Mandarin datasets show that Accent-VITS achieves higher speaker similarity, accent similarity and speech naturalness as compared with a strong baseline (Demos: .).
33#
發(fā)表于 2025-3-27 08:51:37 | 只看該作者
34#
發(fā)表于 2025-3-27 10:46:18 | 只看該作者
35#
發(fā)表于 2025-3-27 16:03:02 | 只看該作者
,Semi-End-to-End Nested Named Entity Recognition from?Speech,rrors are inevitable. In the E2E approach, its annotation method poses a challenge to Automatic Speech Recognition (ASR) when Named Entities (NEs) are nested. This is because multiple special tokens without audio signals between words will exist, which may even cause ambiguity problems for NER. In t
36#
發(fā)表于 2025-3-27 21:37:33 | 只看該作者
,A Lightweight Music Source Separation Model with?Graph Convolution Network,wever, most of them primarily focus on improving their separation performance, while ignoring the issue of model size in the real-world environments. For the application in the real-world environments, in this paper, we propose a lightweight network combined with the Graph convolutional network Atte
37#
發(fā)表于 2025-3-27 23:00:11 | 只看該作者
,Joint Time-Domain and?Frequency-Domain Progressive Learning for?Single-Channel Speech Enhancement alean target, which may introduce speech distortions and limit ASR performance. Meanwhile, these methods usually focus on either the time or frequency domain, ignoring their potential connections. To tackle these problems, we propose a joint time and frequency domain progressive learning (TFDPL) meth
38#
發(fā)表于 2025-3-28 02:38:32 | 只看該作者
39#
發(fā)表于 2025-3-28 09:41:27 | 只看該作者
40#
發(fā)表于 2025-3-28 11:22:01 | 只看該作者
,Within- and Between-Class Sample Interpolation Based Supervised Metric Learning for?Speaker Verific methods may suffer from inadequate and low-quality sample pairs, resulting unsatisfactory speaker verification (SV) performance. To address this issue, we propose the data augmentation methods in the embedding space to guarantee sufficient and high-quality negative points for metric learning, terme
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 15:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
于都县| 泰安市| 富顺县| 达拉特旗| 隆化县| 隆子县| 长乐市| 麦盖提县| 德兴市| 罗城| 泗洪县| 和田县| 保定市| 玉田县| 皮山县| 白水县| 伊宁县| 麦盖提县| 宜宾市| 南召县| 乳山市| 涞源县| 博爱县| 山东| 丹棱县| 麻阳| 黄石市| 天津市| 信阳市| 富锦市| 耒阳市| 长寿区| 金湖县| 白水县| 唐海县| 嘉荫县| 鹤庆县| 黎城县| 漳平市| 广水市| 宜黄县|