找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Malliavin Calculus and Stochastic Analysis; A Festschrift in Hon Frederi Viens,Jin Feng,Eulalia Nualart? Conference proceedings 2013 Spring

[復(fù)制鏈接]
查看: 7809|回復(fù): 57
樓主
發(fā)表于 2025-3-21 19:39:40 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Malliavin Calculus and Stochastic Analysis
副標(biāo)題A Festschrift in Hon
編輯Frederi Viens,Jin Feng,Eulalia Nualart?
視頻videohttp://file.papertrans.cn/622/621998/621998.mp4
概述Its scope spans most uses of the Malliavin calculus.Gathers most of the major players in Malliavin calculus and stochastic analysis worldwide.Honors Professor David Nualart, who is considered by many
叢書(shū)名稱(chēng)Springer Proceedings in Mathematics & Statistics
圖書(shū)封面Titlebook: Malliavin Calculus and Stochastic Analysis; A Festschrift in Hon Frederi Viens,Jin Feng,Eulalia Nualart? Conference proceedings 2013 Spring
描述.The stochastic calculus of variations of Paul Malliavin (1925 - 2010), known today as the Malliavin Calculus, has found many applications, within and beyond the core mathematical discipline. Stochastic analysis provides a fruitful interpretation of this calculus, particularly as described by David Nualart and the scores of mathematicians he influences and with whom he collaborates. Many of these, including leading stochastic analysts and junior researchers, presented their cutting-edge research at an international conference in honor of David Nualart‘s career, on March 19-21, 2011, at the University of Kansas, USA. These scholars and other top-level mathematicians have kindly contributed research articles for this refereed volume..
出版日期Conference proceedings 2013
關(guān)鍵詞Fractional Brownian motion; Gaussian processes; Levy Processes; Malliavin calculus; Stochastic partial d
版次1
doihttps://doi.org/10.1007/978-1-4614-5906-4
isbn_softcover978-1-4899-9657-2
isbn_ebook978-1-4614-5906-4Series ISSN 2194-1009 Series E-ISSN 2194-1017
issn_series 2194-1009
copyrightSpringer Science+Business Media New York 2013
The information of publication is updating

書(shū)目名稱(chēng)Malliavin Calculus and Stochastic Analysis影響因子(影響力)




書(shū)目名稱(chēng)Malliavin Calculus and Stochastic Analysis影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Malliavin Calculus and Stochastic Analysis網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Malliavin Calculus and Stochastic Analysis網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Malliavin Calculus and Stochastic Analysis被引頻次




書(shū)目名稱(chēng)Malliavin Calculus and Stochastic Analysis被引頻次學(xué)科排名




書(shū)目名稱(chēng)Malliavin Calculus and Stochastic Analysis年度引用




書(shū)目名稱(chēng)Malliavin Calculus and Stochastic Analysis年度引用學(xué)科排名




書(shū)目名稱(chēng)Malliavin Calculus and Stochastic Analysis讀者反饋




書(shū)目名稱(chēng)Malliavin Calculus and Stochastic Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:57:19 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:58:44 | 只看該作者
地板
發(fā)表于 2025-3-22 08:24:48 | 只看該作者
The Calculus of Differentials for the Weak Stratonovich Integralweak Stratonovich integral of .(.) with respect to .(.), where . is a fractional Brownian motion with Hurst parameter 1/6, and . and . are smooth functions. We use this expression to derive an It?-type formula for this integral. As in the case where . is the identity, the It?-type formula has a corr
5#
發(fā)表于 2025-3-22 11:10:05 | 只看該作者
6#
發(fā)表于 2025-3-22 13:57:53 | 只看該作者
7#
發(fā)表于 2025-3-22 17:53:53 | 只看該作者
8#
發(fā)表于 2025-3-22 23:23:55 | 只看該作者
Intermittency and Chaos for a Nonlinear Stochastic Wave Equation in Dimension 1n use those intermittency results in order to demonstrate that in many cases the solution is chaotic. For the most part, the novel portion of our work is about the two cases where (1) the initial conditions have compact support, where the global maximum of the solution remains bounded, and (2) the i
9#
發(fā)表于 2025-3-23 01:39:22 | 只看該作者
Generalized Stochastic Heat Equationsrrelated in space, and where the diffusion operator is the inverse of a Riesz potential for any positive fractional parameter. We prove the existence and uniqueness of solution and the H?lder continuity of this solution. In time, H?lder’s parameter does not depend on the fractional parameter. Howeve
10#
發(fā)表于 2025-3-23 07:53:59 | 只看該作者
Gaussian Upper Density Estimates for Spatially Homogeneous SPDEsn the coefficients and the spectral measure associated to the noise ensuring that the density of the corresponding mild solution admits an upper estimate of Gaussian type. The proof is based on the formula for the density arising from the integration-by-parts formula of the Malliavin calculus. Our r
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 07:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丰原市| 体育| 民和| 栖霞市| 罗田县| 洪泽县| 谢通门县| 陈巴尔虎旗| 新巴尔虎左旗| 佛学| 遂昌县| 双峰县| 晴隆县| 永州市| 东平县| 金门县| 华安县| 灵武市| 青神县| 泰和县| 巴彦县| 克什克腾旗| 河津市| 丽水市| 大厂| 安丘市| 罗江县| 准格尔旗| 体育| 崇左市| 军事| 沧源| 惠州市| 深水埗区| 清远市| 龙门县| 盐源县| 镇康县| 西林县| 射洪县| 长沙市|