找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Makro?konomie; Lehrbuch für das vol Eva Below,Wolfram Ebinger,Ulrich Pramann Textbook 1977 Dr. Gabler-Verlag · Wiesbaden 1977 Arbeitslosigk

[復(fù)制鏈接]
樓主: 摩擦
31#
發(fā)表于 2025-3-26 21:08:28 | 只看該作者
Eva von Below,Wolfram Ebinger,Peter Lorenz,Ulrich Pramannnfor developmental pathologies. In this paper, we model and explore brain development by learning a discriminative representation of the cortical brain data (T1 MRI) with a class-wise non-negative dictionary learning (NDDL) approach. For each class, the proposed approach performs data modeling by fir
32#
發(fā)表于 2025-3-27 03:39:11 | 只看該作者
33#
發(fā)表于 2025-3-27 07:34:22 | 只看該作者
34#
發(fā)表于 2025-3-27 13:09:42 | 只看該作者
Eva von Below,Wolfram Ebinger,Peter Lorenz,Ulrich Pramannn. Based on a measured system matrix, MPI reconstruction can be cast as an inverse problem that is commonly solved via regularized iterative optimization. Yet, hand-crafted regularization terms can elicit suboptimal performance. Here, we propose a novel MPI reconstruction “PP-MPI” based on a deep plu
35#
發(fā)表于 2025-3-27 14:59:25 | 只看該作者
Eva von Below,Wolfram Ebinger,Peter Lorenz,Ulrich Pramannnnstructed images. We introduce “NPB-REC”, a non-parametric fully Bayesian framework for uncertainty assessment in MRI reconstruction from undersampled “k-space” data. We use Stochastic gradient Langevin dynamics (SGLD) during the training phase to characterize the posterior distribution of the netwo
36#
發(fā)表于 2025-3-27 18:35:46 | 只看該作者
Eva von Below,Wolfram Ebinger,Peter Lorenz,Ulrich Pramannnlving ill-posed background field removal (BFR) and field-to-source inversion problems. Because current QSM techniques struggle to generate reliable QSM in clinical contexts, QSM clinical translation is greatly hindered. Recently, deep learning (DL) approaches for QSM reconstruction have shown impres
37#
發(fā)表于 2025-3-27 22:20:59 | 只看該作者
38#
發(fā)表于 2025-3-28 05:08:03 | 只看該作者
and reconstruction speed. Recently, deep learning used for compressed sensing (CS) methods have been proposed to accelerate the acquisition by undersampling in the K-space and reconstruct images with neural networks. However, there are still some challenges remained: First, directly training network
39#
發(fā)表于 2025-3-28 07:46:54 | 只看該作者
Eva von Below,Wolfram Ebinger,Peter Lorenz,Ulrich PramannnMRI was extended in three folds: firstly, fully sampled multi-coil k-space data from the scanner, rather than simulated k-space data from magnitude MR images in LOUPE, was retrospectively under-sampled to optimize the under-sampling pattern of in-vivo k-space data; secondly, binary stochastic k-spac
40#
發(fā)表于 2025-3-28 10:46:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 07:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙泉市| 秦安县| 镇安县| 永城市| 溆浦县| 札达县| 平塘县| 崇明县| 台江县| 红安县| 小金县| 霍林郭勒市| 临夏市| 内乡县| 宝鸡市| 武城县| 乌拉特前旗| 镇雄县| 涡阳县| 商洛市| 伊金霍洛旗| 尖扎县| 左权县| 渝中区| 公主岭市| 班玛县| 全南县| 黎平县| 六枝特区| 富川| 民权县| 广汉市| 镇巴县| 张北县| 德安县| 襄城县| 云南省| 罗江县| 昭觉县| 泾源县| 丹东市|