找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Making the Invisible Visible; Understanding Leader Tojo Thatchenkery,Keimei Sugiyama Book 2011 Tojo Thatchenkery and Keimei Sugiyama 2011 A

[復(fù)制鏈接]
查看: 23157|回復(fù): 48
樓主
發(fā)表于 2025-3-21 17:16:39 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Making the Invisible Visible
副標題Understanding Leader
編輯Tojo Thatchenkery,Keimei Sugiyama
視頻videohttp://file.papertrans.cn/622/621795/621795.mp4
圖書封面Titlebook: Making the Invisible Visible; Understanding Leader Tojo Thatchenkery,Keimei Sugiyama Book 2011 Tojo Thatchenkery and Keimei Sugiyama 2011 A
描述Making the Invisible Visible is?a study of Asian Americans in the workplace and provides a framework through which to transform the same qualities that are contributing to this invisibility phenomenon into a positive leadership approach that provides a counterweight to balance the showmanship approach to leadership.
出版日期Book 2011
關(guān)鍵詞Asia; leadership; management; minorities; minority; organization; organizations; Positive Leadership
版次1
doihttps://doi.org/10.1057/9780230339347
isbn_softcover978-1-349-28763-5
isbn_ebook978-0-230-33934-7
copyrightTojo Thatchenkery and Keimei Sugiyama 2011
The information of publication is updating

書目名稱Making the Invisible Visible影響因子(影響力)




書目名稱Making the Invisible Visible影響因子(影響力)學(xué)科排名




書目名稱Making the Invisible Visible網(wǎng)絡(luò)公開度




書目名稱Making the Invisible Visible網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Making the Invisible Visible被引頻次




書目名稱Making the Invisible Visible被引頻次學(xué)科排名




書目名稱Making the Invisible Visible年度引用




書目名稱Making the Invisible Visible年度引用學(xué)科排名




書目名稱Making the Invisible Visible讀者反饋




書目名稱Making the Invisible Visible讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:39:57 | 只看該作者
Tojo Thatchenkery,Keimei Sugiyamacan measure this .. That is, we want to be able to measure whether a result is interesting from a subjective point of view..With this as our goal, we formalise how to probabilistically model real-valued data by the Maximum Entropy principle, where we allow statistics on . sets of cells as background
板凳
發(fā)表于 2025-3-22 00:51:08 | 只看該作者
Tojo Thatchenkery,Keimei Sugiyamat and is costly. Recent years have seen much progress in techniques for automated fault localization, specifically using program spectra – executions of failed and passed test runs provide a basis for isolating the faults. Despite the progress, fault localization in large programs remains a challeng
地板
發(fā)表于 2025-3-22 07:14:42 | 只看該作者
Tojo Thatchenkery,Keimei Sugiyamanal costs challenge their applicability to resource-constrained environments. Taming computational costs has hitherto focused on first-order techniques, such as eliminating numerically insignificant neurons/filters through numerical contribution metric prioritizations, yielding passable improvements
5#
發(fā)表于 2025-3-22 12:19:15 | 只看該作者
6#
發(fā)表于 2025-3-22 15:13:08 | 只看該作者
7#
發(fā)表于 2025-3-22 18:50:52 | 只看該作者
8#
發(fā)表于 2025-3-22 21:36:08 | 只看該作者
Tojo Thatchenkery,Keimei Sugiyamatter suited to which topic. We use two models (AsIC, AsLT), each of which is an extension of the well known Independent Cascade (IC) and Linear Threshold (LT) models and incorporates asynchronous time delay. The model parameters are learned by maximizing the likelihood of observation, and the model
9#
發(fā)表于 2025-3-23 01:46:25 | 只看該作者
10#
發(fā)表于 2025-3-23 06:31:47 | 只看該作者
Tojo Thatchenkery,Keimei Sugiyamarovides a well-calibrated confidence (probability) to indicate the likelihood of the predicted set being correct; for example, an application may automate high-confidence predictions while manually verifying low-confidence predictions. The simplest multi-label classifier, called Binary Relevance (BR
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 03:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
内江市| 阿鲁科尔沁旗| 锡林郭勒盟| 台湾省| 六盘水市| 房山区| 杨浦区| 安义县| 盐源县| 德江县| 石屏县| 宁陕县| 榕江县| 祁东县| 南陵县| 托克托县| 拜泉县| 台北县| 桐乡市| 西和县| 枞阳县| 赫章县| 清水河县| 马山县| 海伦市| 富源县| 五台县| 贵阳市| 磐石市| 永川市| 沿河| 乌兰浩特市| 东山县| 贺州市| 西宁市| 布尔津县| 东丽区| 遂昌县| 彭泽县| 绩溪县| 天长市|