找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Making Transcendence Transparent; An intuitive approac Edward B. Burger,Robert Tubbs Textbook 2004 E.B. Burger and R. Tubbs 2004 complex an

[復制鏈接]
樓主: 不同
21#
發(fā)表于 2025-3-25 04:26:15 | 只看該作者
978-1-4419-1948-9E.B. Burger and R. Tubbs 2004
22#
發(fā)表于 2025-3-25 07:55:45 | 只看該作者
,0.1100010000000000000000010000…,mber is defined not by what it . but rather by what it is .. What will become apparent as we develop the classical theory of transcendental numbers is that every demonstration of the transcendence of a particular number is indirect—a number is shown to be transcendental by showing that it is not algebraic.
23#
發(fā)表于 2025-3-25 13:11:49 | 只看該作者
,2.7182818284590452353602874713…,rough this chapter sets the stage for much of what follows in our future explorations. To foreshadow the fundamental strategies to come, we open with Joseph Fourier’s 1815 clever proof of Euler’s result that . is irrational.
24#
發(fā)表于 2025-3-25 18:34:10 | 只看該作者
25#
發(fā)表于 2025-3-25 20:31:29 | 只看該作者
26#
發(fā)表于 2025-3-26 01:16:52 | 只看該作者
,,wer series. Specifically, we consider transcendence issues within the setting of function fields in a single variable over a finite field. While this theory has important implications in many different areas of mathematics, our goal here is to discover an object in this context that is analogous to the all-important exponential function ...
27#
發(fā)表于 2025-3-26 07:59:11 | 只看該作者
28#
發(fā)表于 2025-3-26 09:52:14 | 只看該作者
29#
發(fā)表于 2025-3-26 15:23:25 | 只看該作者
,0.1100010000000000000000010000…,mber is defined not by what it . but rather by what it is .. What will become apparent as we develop the classical theory of transcendental numbers is that every demonstration of the transcendence of a particular number is indirect—a number is shown to be transcendental by showing that it is not alg
30#
發(fā)表于 2025-3-26 17:29:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 08:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
习水县| 隆昌县| 中阳县| 通山县| 历史| 察隅县| 垫江县| 乌拉特后旗| 阜阳市| 蒙山县| 蓬莱市| 正镶白旗| 迁西县| 岚皋县| 汤阴县| 徐水县| 钟山县| 故城县| 连州市| 印江| 兴国县| 都兰县| 日照市| 华坪县| 繁峙县| 汉寿县| 海淀区| 长岛县| 沂源县| 旺苍县| 游戏| 大石桥市| 临桂县| 开平市| 酒泉市| 阳曲县| 且末县| 南投市| 阳城县| 阜宁县| 成武县|