找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Making Transcendence Transparent; An intuitive approac Edward B. Burger,Robert Tubbs Textbook 2004 E.B. Burger and R. Tubbs 2004 complex an

[復制鏈接]
樓主: 不同
21#
發(fā)表于 2025-3-25 04:26:15 | 只看該作者
978-1-4419-1948-9E.B. Burger and R. Tubbs 2004
22#
發(fā)表于 2025-3-25 07:55:45 | 只看該作者
,0.1100010000000000000000010000…,mber is defined not by what it . but rather by what it is .. What will become apparent as we develop the classical theory of transcendental numbers is that every demonstration of the transcendence of a particular number is indirect—a number is shown to be transcendental by showing that it is not algebraic.
23#
發(fā)表于 2025-3-25 13:11:49 | 只看該作者
,2.7182818284590452353602874713…,rough this chapter sets the stage for much of what follows in our future explorations. To foreshadow the fundamental strategies to come, we open with Joseph Fourier’s 1815 clever proof of Euler’s result that . is irrational.
24#
發(fā)表于 2025-3-25 18:34:10 | 只看該作者
25#
發(fā)表于 2025-3-25 20:31:29 | 只看該作者
26#
發(fā)表于 2025-3-26 01:16:52 | 只看該作者
,,wer series. Specifically, we consider transcendence issues within the setting of function fields in a single variable over a finite field. While this theory has important implications in many different areas of mathematics, our goal here is to discover an object in this context that is analogous to the all-important exponential function ...
27#
發(fā)表于 2025-3-26 07:59:11 | 只看該作者
28#
發(fā)表于 2025-3-26 09:52:14 | 只看該作者
29#
發(fā)表于 2025-3-26 15:23:25 | 只看該作者
,0.1100010000000000000000010000…,mber is defined not by what it . but rather by what it is .. What will become apparent as we develop the classical theory of transcendental numbers is that every demonstration of the transcendence of a particular number is indirect—a number is shown to be transcendental by showing that it is not alg
30#
發(fā)表于 2025-3-26 17:29:09 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 16:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
六安市| 化州市| 赤峰市| 天峨县| 康乐县| 垫江县| 宁城县| 陆河县| 屯昌县| 五台县| 云浮市| 抚远县| 崇州市| 汾阳市| 郴州市| 海兴县| 东莞市| 专栏| 河源市| 彩票| 游戏| 稷山县| 东山县| 吴川市| 永胜县| 安平县| 高尔夫| 育儿| 白水县| 正宁县| 方山县| 东乌珠穆沁旗| 库车县| 南汇区| 金华市| 大田县| 象州县| 莱州市| 夏津县| 万年县| 罗山县|