找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Making Transcendence Transparent; An intuitive approac Edward B. Burger,Robert Tubbs Textbook 2004 E.B. Burger and R. Tubbs 2004 complex an

[復制鏈接]
樓主: 不同
21#
發(fā)表于 2025-3-25 04:26:15 | 只看該作者
978-1-4419-1948-9E.B. Burger and R. Tubbs 2004
22#
發(fā)表于 2025-3-25 07:55:45 | 只看該作者
,0.1100010000000000000000010000…,mber is defined not by what it . but rather by what it is .. What will become apparent as we develop the classical theory of transcendental numbers is that every demonstration of the transcendence of a particular number is indirect—a number is shown to be transcendental by showing that it is not algebraic.
23#
發(fā)表于 2025-3-25 13:11:49 | 只看該作者
,2.7182818284590452353602874713…,rough this chapter sets the stage for much of what follows in our future explorations. To foreshadow the fundamental strategies to come, we open with Joseph Fourier’s 1815 clever proof of Euler’s result that . is irrational.
24#
發(fā)表于 2025-3-25 18:34:10 | 只看該作者
25#
發(fā)表于 2025-3-25 20:31:29 | 只看該作者
26#
發(fā)表于 2025-3-26 01:16:52 | 只看該作者
,,wer series. Specifically, we consider transcendence issues within the setting of function fields in a single variable over a finite field. While this theory has important implications in many different areas of mathematics, our goal here is to discover an object in this context that is analogous to the all-important exponential function ...
27#
發(fā)表于 2025-3-26 07:59:11 | 只看該作者
28#
發(fā)表于 2025-3-26 09:52:14 | 只看該作者
29#
發(fā)表于 2025-3-26 15:23:25 | 只看該作者
,0.1100010000000000000000010000…,mber is defined not by what it . but rather by what it is .. What will become apparent as we develop the classical theory of transcendental numbers is that every demonstration of the transcendence of a particular number is indirect—a number is shown to be transcendental by showing that it is not alg
30#
發(fā)表于 2025-3-26 17:29:09 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 16:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
台北县| 锦州市| 邹平县| 甘洛县| 龙里县| 河池市| 会理县| 错那县| 都兰县| 宜春市| 左权县| 阿拉善右旗| 洛扎县| 阳泉市| 沛县| 凉山| 湟中县| 文昌市| 玉田县| 固原市| 嵊泗县| 涞水县| 江陵县| 司法| 临安市| 虹口区| 高邮市| 富蕴县| 芮城县| 商洛市| 贵德县| 常山县| 连南| 黑河市| 沅江市| 景洪市| 安远县| 武隆县| 石渠县| 奉贤区| 固原市|