找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Making Images with Mathematics; Alexei Sourin Textbook 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Sp

[復(fù)制鏈接]
樓主: fungus
21#
發(fā)表于 2025-3-25 05:58:35 | 只看該作者
22#
發(fā)表于 2025-3-25 10:12:06 | 只看該作者
23#
發(fā)表于 2025-3-25 13:56:56 | 只看該作者
978-3-030-69834-8The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
24#
發(fā)表于 2025-3-25 18:19:12 | 只看該作者
Making Images with Mathematics978-3-030-69835-5Series ISSN 1863-7310 Series E-ISSN 2197-1781
25#
發(fā)表于 2025-3-25 23:13:09 | 只看該作者
From Ancient Greeks to Pixels,The chapter explains how we see the world and how computer makes images. Beginning with Ancient Greek Geometry, it travels to modern geometry, introduces the subject of computer graphics and visualization, explains how the graphics pipeline works, and how a geometric point turns into a color spot on a computer screen.
26#
發(fā)表于 2025-3-26 00:57:44 | 只看該作者
Geometric Shapes,This chapter presents the mathematical foundations of shape modeling. Curves, surfaces, and solid objects are considered as set of points, which are obtained by sampling various types of mathematical functions. Using the concept of sweeping, many varieties of shapes are defined based on only a few simple foundation principles.
27#
發(fā)表于 2025-3-26 04:47:33 | 只看該作者
Transformations,This chapter considers how the same formulas, used for making shapes, can define their transformations. The rationale for using matrix transformations is explained and affine and projection matrix transformations are presented. Generalization of geometric sweeping implemented with matrices is further discussed.
28#
發(fā)表于 2025-3-26 10:43:41 | 只看該作者
29#
發(fā)表于 2025-3-26 15:04:23 | 只看該作者
Adding Visual Appearance to Geometry,In this chapter, we consider how visual appearance including colors, shadows, material properties and textures can be added to geometry and how its photorealistic appearance can be achieved. The formulas, previously used for defining geometry, now will define variable colors as a new modality of immersion into the world of geometric definitions.
30#
發(fā)表于 2025-3-26 20:09:47 | 只看該作者
Putting Everything Together,In this chapter, the ways of making interactive, real-time and immersive visualization environments are considered including technical and physiological design and implementation issues. Still the same transformations, and actually the same basic mathematical principles, will be used in the fast visualization methods.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-3 11:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
雷山县| 准格尔旗| 方山县| 黔西县| 榆林市| 定日县| 眉山市| 株洲县| 滦南县| 东乡县| 岢岚县| 班戈县| 壶关县| 分宜县| 甘德县| 翁源县| 梁河县| 东光县| 周宁县| 汶川县| 白朗县| 定安县| 五指山市| 绵竹市| 竹北市| 新绛县| 苏州市| 樟树市| 横峰县| 临海市| 三门县| 阿图什市| 嘉黎县| 上犹县| 河津市| 和平县| 鹤山市| 彩票| 白朗县| 扶余县| 洛川县|