找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation Laws; Gary Webb Book 2018 Springer International Publishing AG

[復(fù)制鏈接]
樓主: metamorphose
41#
發(fā)表于 2025-3-28 14:37:52 | 只看該作者
,Euler-Poincaré Equation Approach,wed that the equations for ideal, incompressible fluid dynamics could be derived from a variational principle in which the Lagrangian consists of the fluid kinetic energy, subject to an infinite Lie group (pseudo-Lie group) constraint, associated with the Lagrangian map (the constraint is that the L
42#
發(fā)表于 2025-3-28 19:20:02 | 只看該作者
Hamiltonian Approach,range multipliers to enforce the constraints of mass conservation; the entropy advection equation; Faraday’s equation and the so-called Lin constraint describing in part, the vorticity of the flow (i.e. Kelvin’s theorem). This leads to Hamilton’s canonical equations in terms of Clebsch potentials. T
43#
發(fā)表于 2025-3-29 02:49:01 | 只看該作者
44#
發(fā)表于 2025-3-29 04:16:58 | 只看該作者
45#
發(fā)表于 2025-3-29 09:14:06 | 只看該作者
MHD Stability,bria was investigated in the seminal paper by Bernstein et al. (.) who derived sufficient conditions for magneto-static equilibria, based on the so-called energy principle. A sufficient, but not necessary condition for magnetostatic equilibria is that the potential energy functional .(., .) satisfie
46#
發(fā)表于 2025-3-29 13:01:54 | 只看該作者
47#
發(fā)表于 2025-3-29 15:49:27 | 只看該作者
48#
發(fā)表于 2025-3-29 23:41:52 | 只看該作者
49#
發(fā)表于 2025-3-30 03:36:14 | 只看該作者
50#
發(fā)表于 2025-3-30 07:47:53 | 只看該作者
Introduction,for systems of differential equations governed by an action principle. Noether’s theorem applies to systems of Euler-Lagrange equations that are in Kovalevskaya form (e.g Olver (1993)). For other Euler-Lagrange systems, each nontrivial variational symmetry leads to a conservation law, but there is no guarantee that it is non-trivial.
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 06:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
那坡县| 沂水县| 利津县| 抚宁县| 商丘市| 延边| 嘉鱼县| 上林县| 漯河市| 太白县| 米林县| 通州市| 太白县| 天门市| 游戏| 汝州市| 台中市| 龙泉市| 广元市| 铜鼓县| 普安县| 五常市| 潜江市| 田林县| 盐边县| 潼关县| 宝清县| 保靖县| 江都市| 湘潭市| 贡嘎县| 浪卡子县| 蓝田县| 雷波县| 广宁县| 平邑县| 鸡泽县| 红桥区| 巴楚县| 崇州市| 朔州市|