找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Magnetic Stochasticity in Magnetically Confined Fusion Plasmas; Chaos of Field Lines Sadrilla Abdullaev Book 2014 Springer International Pu

[復(fù)制鏈接]
樓主: BRISK
41#
發(fā)表于 2025-3-28 18:31:35 | 只看該作者
978-3-319-34971-8Springer International Publishing Switzerland 2014
42#
發(fā)表于 2025-3-28 19:04:00 | 只看該作者
Magnetic Stochasticity in Magnetically Confined Fusion Plasmas978-3-319-01890-4Series ISSN 1615-5653 Series E-ISSN 2197-6791
43#
發(fā)表于 2025-3-28 23:43:45 | 只看該作者
https://doi.org/10.1007/978-3-319-01890-4Analytical Models of Equilibrium Magnetic Fields; Asymptotic Analysis of Magnetic Perturbations; Chaos
44#
發(fā)表于 2025-3-29 04:36:50 | 只看該作者
45#
發(fā)表于 2025-3-29 07:59:52 | 只看該作者
Springer Series on Atomic, Optical, and Plasma Physicshttp://image.papertrans.cn/m/image/621357.jpg
46#
發(fā)表于 2025-3-29 13:50:59 | 只看該作者
Magnetic Field Perturbations,ibrium field is small. The magnetic perturbations may have a diverse nature: error fields produced by imperfect technical installation of poloidal and toroidal field coils, helical magnetic fields generated by MHD instabilities, magnetic fields created by external coils etc.
47#
發(fā)表于 2025-3-29 18:01:08 | 只看該作者
Onset of Dynamical Chaos: Mathematical Aspects,urbations, i.e., to the fundamental problem of dynamics (see, Sect.?.). Chaos of magnetic field lines in magnetic fusion devices is an excellent example of dynamical chaos in Hamiltonian systems with one-and-half-degrees of freedom. In this chapter we discuss the some mathematical aspects of the onset of chaos in Hamiltonian systems.
48#
發(fā)表于 2025-3-29 20:40:43 | 只看該作者
Transport of Field Lines and Particles in a Stochastic Magnetic Field,use a test particle model in which no reaction of a plasma medium to particlemotion is taken into account. In this simplified approach we derive the analytical formulas of the diffusion coefficients describing the radial chaotic transport of particles and investigate their validity using the numerical simulations.
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 01:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
牙克石市| 蒙城县| 广汉市| 九龙坡区| 芜湖县| 诏安县| 漳浦县| 马龙县| 建宁县| 景洪市| 双江| 巴彦县| 长泰县| 漠河县| 始兴县| 宜良县| 宜宾市| 田阳县| 大悟县| 天长市| 永定县| 昌邑市| 旌德县| 安岳县| 大名县| 嘉兴市| 虞城县| 宁国市| 察哈| 乡宁县| 民和| 韶山市| 科技| 奉贤区| 大埔区| 嘉峪关市| 南投市| 万全县| 南充市| 全州县| 邹平县|