找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Magic Squares; Their History and Co Jacques Sesiano Book 2019 Springer Nature Switzerland AG 2019 diagonal placing.method of the cross.comp

[復(fù)制鏈接]
查看: 20372|回復(fù): 38
樓主
發(fā)表于 2025-3-21 16:30:54 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Magic Squares
副標(biāo)題Their History and Co
編輯Jacques Sesiano
視頻videohttp://file.papertrans.cn/622/621153/621153.mp4
概述Provides an English translation of the author‘s study on the science of magic squares.Contains an updated overview of the subject.Includes a full chapter on other magic figures
叢書名稱Sources and Studies in the History of Mathematics and Physical Sciences
圖書封面Titlebook: Magic Squares; Their History and Co Jacques Sesiano Book 2019 Springer Nature Switzerland AG 2019 diagonal placing.method of the cross.comp
描述.The science of magic squares witnessed an important development in the Islamic?world during the Middle Ages, with a great variety of construction methods being?created and ameliorated. The initial step was the translation, in the ninth century,?of an anonymous Greek text containing the description of certain highly developed?arrangements, no doubt the culmination of ancient research on magic squares..
出版日期Book 2019
關(guān)鍵詞diagonal placing; method of the cross; composite magic squares; method of Stifel; magic triangles; magic
版次1
doihttps://doi.org/10.1007/978-3-030-17993-9
isbn_softcover978-3-030-17995-3
isbn_ebook978-3-030-17993-9Series ISSN 2196-8810 Series E-ISSN 2196-8829
issn_series 2196-8810
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Magic Squares影響因子(影響力)




書目名稱Magic Squares影響因子(影響力)學(xué)科排名




書目名稱Magic Squares網(wǎng)絡(luò)公開度




書目名稱Magic Squares網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Magic Squares被引頻次




書目名稱Magic Squares被引頻次學(xué)科排名




書目名稱Magic Squares年度引用




書目名稱Magic Squares年度引用學(xué)科排名




書目名稱Magic Squares讀者反饋




書目名稱Magic Squares讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:08:35 | 只看該作者
Other magic figures,es them all. Such an arrangement may lend itself to the construction of magic squares. The second kind examined here will be that of squares with an empty cell, where the magic sum is nevertheless displayed. Finally, we shall consider the squares with ‘divided cells’, which are in fact two magic squares combined in a single figure.
板凳
發(fā)表于 2025-3-22 04:08:22 | 只看該作者
2196-8810 eek text containing the description of certain highly developed?arrangements, no doubt the culmination of ancient research on magic squares..978-3-030-17995-3978-3-030-17993-9Series ISSN 2196-8810 Series E-ISSN 2196-8829
地板
發(fā)表于 2025-3-22 05:07:05 | 只看該作者
5#
發(fā)表于 2025-3-22 09:32:50 | 只看該作者
6#
發(fā)表于 2025-3-22 15:50:27 | 只看該作者
7#
發(fā)表于 2025-3-22 17:09:01 | 只看該作者
Bordered squares with separation by parity,le of each side of the main square and the even numbers around it (Fig. 276). This configuration naturally occurs in the square of order 3 (Fig. 277), which certainly led to the search for an analogous configuration in odd squares of higher orders, which is by no means an easy matter.
8#
發(fā)表于 2025-3-22 23:52:22 | 只看該作者
Other magic figures,principles), such as magic triangles, rectangles, circles, crosses, cubes. Starting with the case of square figures, we shall first examine ‘literal squares’, that is, ones where we are to place different letters, in number equal to the order, in such a way that each line, column and diagonal includ
9#
發(fā)表于 2025-3-23 03:56:52 | 只看該作者
10#
發(fā)表于 2025-3-23 07:40:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 06:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
枣强县| 宝应县| 朔州市| 尉氏县| 肇州县| 鞍山市| 宿迁市| 沙田区| 新沂市| 姜堰市| 天津市| 无极县| 宜春市| 巢湖市| 遵化市| 合江县| 嘉峪关市| 工布江达县| 南昌市| 阜平县| 堆龙德庆县| 定结县| 昭觉县| 杭州市| 洪江市| 壶关县| 黄梅县| 互助| 瑞金市| 乐亭县| 沁水县| 安远县| 益阳市| 安西县| 新巴尔虎左旗| 阳泉市| 阿拉善盟| 宁津县| 安阳市| 沂水县| 高安市|