找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity; Adrian Muntean,Jens Rademacher,Antonios Zagaris

[復(fù)制鏈接]
查看: 18414|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:33:45 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity
編輯Adrian Muntean,Jens Rademacher,Antonios Zagaris
視頻videohttp://file.papertrans.cn/622/621098/621098.mp4
概述research on Macroscopic and Large.Scale Phenomena such as Coarse.Graining, Mean Field Limits and Ergodicity.Offspring of the summer school “Macroscopic and large scale phenomena: coarse graining, mean
叢書名稱Lecture Notes in Applied Mathematics and Mechanics
圖書封面Titlebook: Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity;  Adrian Muntean,Jens Rademacher,Antonios Zagaris
描述.This book is the offspring of a summer school school “Macroscopic andlarge scale..phenomena: coarse graining, mean field limits and ergodicity”, which washeld in 2012 at the University of Twente, the Netherlands. The focus lies onmathematically rigorous methods for multiscale problems of physical origins...Each of the four book chapters is based on a set of lectures deliveredat the school, yet all authors have expanded and refined their contributions.?..Francois Golsedelivers a chapter on the dynamics of large particle systems in the mean fieldlimit and surveys the most significant tools and methods to establish suchlimits with mathematical rigor. Golse discusses in depth a variety of examples,including Vlasov--Poisson and Vlasov--Maxwell systems. ..Lucia Scardia focuseson the rigorous derivation of macroscopic models using $Gamma$-convergence, amore recent variational method, which has proved very powerful for problems inmaterial science. Scardia illustrates this by various basic examples and a moreadvanced case study from dislocation theory...Alexander Mielke‘scontribution focuses on the multiscale modeling and rigorous analysis ofgeneralized gradient systems through the new con
出版日期Book 2016
關(guān)鍵詞Macroscopic and Large Scale Phenomena; Coarse Graining; Mean Field Limits; Ergodicity; Particle Systems;
版次1
doihttps://doi.org/10.1007/978-3-319-26883-5
isbn_softcover978-3-319-26882-8
isbn_ebook978-3-319-26883-5Series ISSN 2197-6724 Series E-ISSN 2197-6732
issn_series 2197-6724
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

書目名稱Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity影響因子(影響力)




書目名稱Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity影響因子(影響力)學(xué)科排名




書目名稱Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity網(wǎng)絡(luò)公開度




書目名稱Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity被引頻次




書目名稱Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity被引頻次學(xué)科排名




書目名稱Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity年度引用




書目名稱Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity年度引用學(xué)科排名




書目名稱Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity讀者反饋




書目名稱Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:29:49 | 只看該作者
Fran?ois Golser for promotion is generous about Burns, with entries such as ‘Never tryed, a poet’ giving way to ‘Turns out well’, and then to ‘The poet does pretty well’. This amiable attitude was not reciprocated by Burns, who considered the job ‘a(chǎn)n incessant drudgery, and… nearly a complete bar to every species
板凳
發(fā)表于 2025-3-22 03:04:55 | 只看該作者
Lucia Scardiament, and at least since the eighteenth century historical writing has been amongst the most widely read forms of literature and often the most influential in creating a society’s image of itself. It is obvious, therefore, that what we call history and literature overlap. But if we leave history and
地板
發(fā)表于 2025-3-22 05:17:22 | 只看該作者
5#
發(fā)表于 2025-3-22 11:28:38 | 只看該作者
6#
發(fā)表于 2025-3-22 15:02:52 | 只看該作者
7#
發(fā)表于 2025-3-22 17:12:14 | 只看該作者
On the Dynamics of Large Particle Systems in the Mean Field Limit,, the vorticity formulation of the two-dimensional Euler equation for incompressible fluids, or the time-dependent Hartree equation in quantum mechanics—can be rigorously derived from the fundamental microscopic equations that govern the evolution of large, interacting particle systems. The emphasis
8#
發(fā)表于 2025-3-22 21:56:08 | 只看該作者
Continuum Limits of Discrete Models via ,-Convergence,ms, defects in metals, crowds—one has to face the challenging problem of deriving a macroscopic model to describe the . behaviour of the interacting particles. .-convergence is a mathematically rigorous approach to the upscaling, and has been successfully applied to several problems in material scie
9#
發(fā)表于 2025-3-23 03:08:45 | 只看該作者
On Evolutionary ,-Convergence for Gradient Systems,dient system is defined in terms of two functionals, namely the energy functional . and the dissipation potential . or the associated dissipation distance. We assume that the functionals depend on a small parameter and that the associated gradient systems have solutions .. We investigate the questio
10#
發(fā)表于 2025-3-23 09:24:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 02:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
杭锦后旗| 会昌县| 曲沃县| 潢川县| 工布江达县| 陆丰市| 宜良县| 洪洞县| 白山市| 郑州市| 澄迈县| 修文县| 台前县| 隆子县| 张家口市| 高淳县| 宣武区| 曲松县| 马鞍山市| 天全县| 长子县| 浦县| 西藏| 会宁县| 越西县| 宜春市| 历史| 古蔺县| 萍乡市| 黎城县| 齐齐哈尔市| 蛟河市| 慈溪市| 石阡县| 个旧市| 霍州市| 灵武市| 尚志市| 庆安县| 始兴县| 高密市|