找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Macroscopic Modelling of Turbulent Flows; Proceedings of a Wor Uriel Frisch,Joseph B. Keller,Olivier Pironneau Conference proceedings 1985

[復(fù)制鏈接]
樓主: monster
11#
發(fā)表于 2025-3-23 15:44:20 | 只看該作者
12#
發(fā)表于 2025-3-23 21:31:35 | 只看該作者
13#
發(fā)表于 2025-3-24 00:46:18 | 只看該作者
14#
發(fā)表于 2025-3-24 05:31:29 | 只看該作者
Homogenization and visco-elasticity of turbulence,equation with 2.-periodic boundary conditions. It is found that these solutions exhibit visco-elastic behaviour under very large wavelength perturbations. This elasticity property is then extended to Navier-Stokes turbulence. It is suggested that two-dimensional flame fronts and various turbulent fl
15#
發(fā)表于 2025-3-24 08:52:35 | 只看該作者
16#
發(fā)表于 2025-3-24 12:43:11 | 只看該作者
Eddy viscosity subgrid scale models for homogeneous turbulence,dy viscosity. For the sake of simplicity, this model can be approximated by a wave number independent eddy viscosity. This constant eddy viscosity is expressed in terms of the small eddies, so that both the large scales and the small scales are known during the simulation for better comparison with
17#
發(fā)表于 2025-3-24 15:20:09 | 只看該作者
18#
發(fā)表于 2025-3-24 21:29:16 | 只看該作者
A stochastic subgrid model for sheared turbulence,on of the statistical properties of the small scales. The model is stochastic in order to allow a “desaveraging” of the informations provided by the E.D.Q.N.M. closure. It is basedon stochastic amplitude equations for two-point closures. It allows backflow of energy from the small scales, introduces
19#
發(fā)表于 2025-3-24 23:20:16 | 只看該作者
Numerical simulation of homogeneous turbulence, velocity gradients. The Taylor microscale Reynolds number is in the range 20–70. The two strains considered are plane strain and solid body rotation. For the plane strain case, the two described simulations show clearly the reorganizing processes of the turbulent field after each abrupt change of t
20#
發(fā)表于 2025-3-25 07:06:46 | 只看該作者
Time-dependent rayleigh-benard convection in low prandtl number fluids,bounding surfaces maintained at constant temperatures. We consider the case of free slip boundary con ditions for a fluid of Prandtl number Pr = 0.2 and that of nonslip boundary conditions for a fluid with Px = 0.025. In the former situation, we observe stationary, periodic, bi-periodic and chaotic
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 03:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
合山市| 呼和浩特市| 三亚市| 高邮市| 张家港市| 富蕴县| 福泉市| 德州市| 宜州市| 南岸区| 金塔县| 珲春市| 金沙县| 新兴县| 金坛市| 车致| 澄江县| 齐河县| 合作市| 屏南县| 栾城县| 云阳县| 章丘市| 锦屏县| 张家港市| 柳江县| 商南县| 塔河县| 治县。| 新闻| 咸宁市| 达州市| 保德县| 北辰区| 兖州市| 会泽县| 观塘区| 阿鲁科尔沁旗| 招远市| 甘南县| 盱眙县|