找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Macroeconomics; A Fresh Start Peter Dorman Textbook 2014 Springer-Verlag GmbH Germany, part of Springer Nature 2014 Economics.Introductory.

[復(fù)制鏈接]
樓主: DEBUT
11#
發(fā)表于 2025-3-23 10:35:58 | 只看該作者
ie sphere geometry....Further key features of Lie Sphere Geometry 2/e:..- Provides the reader with all the necessary background to reach the frontiers of research in this area..- Fills a gap in the literature; 978-0-387-74655-5978-0-387-74656-2Series ISSN 0172-5939 Series E-ISSN 2191-6675
12#
發(fā)表于 2025-3-23 17:35:57 | 只看該作者
13#
發(fā)表于 2025-3-23 22:04:21 | 只看該作者
Peter Dormansciplinary and interrelated field..The topics covered in this Volume are the most modern trends in the field of the Workshop: Representation Theory, Symmetries in String Theories, Symmetries in Gravity Theories978-981-19-4753-7978-981-19-4751-3Series ISSN 2194-1009 Series E-ISSN 2194-1017
14#
發(fā)表于 2025-3-24 01:41:36 | 只看該作者
15#
發(fā)表于 2025-3-24 05:03:53 | 只看該作者
16#
發(fā)表于 2025-3-24 08:37:25 | 只看該作者
17#
發(fā)表于 2025-3-24 10:54:22 | 只看該作者
18#
發(fā)表于 2025-3-24 18:35:23 | 只看該作者
Peter Dormanh--Chandra‘s?Plancherel formula for semisimple Lie groups.? ..Ideal?for graduate students and researchers, ".Lie Theory". provides a broad, clearly focused examination of semisimple Lie groups and their?integral importance to research in?many branches of mathematics..
19#
發(fā)表于 2025-3-24 20:31:37 | 只看該作者
Peter Dormanor this algebra. This problem has been solved explicitly for only a small number of pairs (.). According to [Di], the “known” cases are (., 2) for all .; (., 3) for . = 2,3,4; and (2, .) for . ≤ 8. See also [DL], [Sh] for recent progress, and [Me] for the state of affairs in the late 19. century.
20#
發(fā)表于 2025-3-25 01:03:22 | 只看該作者
Peter Dormannto Hurwitz zeta functions which enables us to explicitly demonstrate the equivalence of the cutoff function technique with the zeta regularization technique. Our method of approach confirms the results of Herdeiro et al. (Class. Quant. Gravit. 25:165010, 2008) and ?zcan (Class. Quant. Gravit. 23:55
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 01:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
霍邱县| 界首市| 德保县| 绥芬河市| 丰城市| 镇康县| 桓台县| 宜君县| 且末县| 池州市| 江源县| 梁平县| 邹平县| 建湖县| 建昌县| 大埔区| 新巴尔虎右旗| 凤阳县| 达孜县| 利津县| 民勤县| 宁明县| 佳木斯市| 旺苍县| 铁岭市| 衡南县| 交口县| 彝良县| 太仆寺旗| 江达县| 武威市| 焉耆| 瑞安市| 云阳县| 故城县| 辽源市| 东明县| 石城县| 郁南县| 淳化县| 三穗县|