找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Macroeconomic Forecasting in the Era of Big Data; Theory and Practice Peter Fuleky Book 2020 Springer Nature Switzerland AG 2020 Big Data.M

[復(fù)制鏈接]
樓主: Hoover
41#
發(fā)表于 2025-3-28 17:57:19 | 只看該作者
Principal Component and Static Factor Analysisn reduction. In this chapter, we consider the forecasting problem using factor models, with special consideration to large datasets. In factor model estimation, we focus on principal component methods, and show how the estimated factors can be used to assist forecasting. Machine learning methods are
42#
發(fā)表于 2025-3-28 21:16:32 | 只看該作者
Subspace Methodsace methods are a new class of dimension reduction methods that have been found to yield precise forecasts when applied to macroeconomic and financial data. In this chapter, we review three subspace methods: subset regression, random projection regression, and compressed regression. We provide curre
43#
發(fā)表于 2025-3-28 23:47:39 | 只看該作者
Variable Selection and Feature Screeningthe ultra-high dimensionality of the feature space to a moderate size in a fast and efficient way and meanwhile retaining all the important features in the reduced feature space. This is referred to as the sure screening property. After feature screening, more sophisticated methods can be applied to
44#
發(fā)表于 2025-3-29 06:44:13 | 只看該作者
45#
發(fā)表于 2025-3-29 08:16:56 | 只看該作者
46#
發(fā)表于 2025-3-29 15:09:47 | 只看該作者
47#
發(fā)表于 2025-3-29 18:11:55 | 只看該作者
Boostingomic researches, especially when the data available is high-dimensional, i.e., the number of explanatory variables (.) is greater than the length of the sample size (.). Common approaches include factor models, the principal component analysis, and regularized regressions. However, these methods req
48#
發(fā)表于 2025-3-29 20:05:38 | 只看該作者
Density Forecastinge the accuracy of density forecasts are reviewed and calibration methods for improving the accuracy of forecasts are presented. The manuscript provides some numerical simulation tools to approximate predictive densities with a focus on parallel computing on graphical process units. Some simple examp
49#
發(fā)表于 2025-3-30 00:42:42 | 只看該作者
50#
發(fā)表于 2025-3-30 07:10:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 10:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌拉特中旗| 凉山| 桑植县| 茂名市| 泰顺县| 莱州市| 濮阳市| 青海省| 重庆市| 泸定县| 白玉县| 长岭县| 深圳市| 南投市| 田东县| 紫阳县| 清水河县| 哈密市| 四川省| 章丘市| 瑞丽市| 阿坝| 弋阳县| 金沙县| 陆川县| 峡江县| 师宗县| 波密县| 夏津县| 绥化市| 怀安县| 思南县| 白河县| 麻城市| 西华县| 财经| 于都县| 眉山市| 金坛市| 集安市| 寿阳县|