找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Macroeconometrics and Time Series Analysis; Steven N. Durlauf,Lawrence E. Blume Book 2010 Palgrave Macmillan, a division of Macmillan Publ

[復制鏈接]
樓主: 手或腳
41#
發(fā)表于 2025-3-28 15:27:53 | 只看該作者
42#
發(fā)表于 2025-3-28 21:00:06 | 只看該作者
43#
發(fā)表于 2025-3-28 23:20:14 | 只看該作者
Bayesian time series analysis,eciation of the advantages that Bayesian inference entails. In particular, it provides us with a formal way to incorporate the prior information we often possess before seeing the data, it fits perfectly with sequential learning and decision making, and it directly leads to exact small sample result
44#
發(fā)表于 2025-3-29 04:15:43 | 只看該作者
Central limit theorems,sses in a large number of experiments. Later on, Laplace generalized his results, but it took 20th century mathematics to give an exact and complete description of this subject. So let me now describe the modern approach. We assume that for each . we have given a sequence ..,…. . of random variables
45#
發(fā)表于 2025-3-29 09:34:00 | 只看該作者
46#
發(fā)表于 2025-3-29 12:57:52 | 只看該作者
47#
發(fā)表于 2025-3-29 19:25:02 | 只看該作者
48#
發(fā)表于 2025-3-29 22:34:38 | 只看該作者
Forecasting,cisions are so important as a basis for these fields, a great deal of attention has been paid to the question of how best to forecast variables and occurrences of interest. There are several distinct types of forecasting situations, including event timing, event outcome, and time-series forecasts. E
49#
發(fā)表于 2025-3-30 01:39:38 | 只看該作者
50#
發(fā)表于 2025-3-30 06:03:12 | 只看該作者
Functional central limit theorems,s, however, a more detailed analysis is necessary. When testing for structural constancy in models, we might be interested in the temporal evolution of our sums. So for random variables . we are interested in analysing the behaviour of as a function of . for .. It is convenient to normalize the time
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-24 16:08
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
金溪县| 岳阳县| 灵石县| 祁阳县| 新疆| 凤凰县| 崇阳县| 井冈山市| 沙洋县| 黄陵县| 广东省| 湟源县| 晋江市| 静宁县| 桐梓县| 霍林郭勒市| 洞头县| 犍为县| 江门市| 洱源县| 台中市| 东光县| 永清县| 太和县| 阜宁县| 竹山县| 衡南县| 犍为县| 崇明县| 海阳市| 溆浦县| 通城县| 玉环县| 绥芬河市| 江油市| 台湾省| 佛坪县| 花莲县| 通榆县| 宁陵县| 安丘市|