找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machines, Computations, and Universality; 7th International Co Jerome Durand-Lose,Benedek Nagy Conference proceedings 2015 Springer Interna

[復(fù)制鏈接]
樓主: Wilson
41#
發(fā)表于 2025-3-28 16:42:20 | 只看該作者
42#
發(fā)表于 2025-3-28 20:43:07 | 只看該作者
Universality of Graph-controlled Leftist Insertion-deletion Systems with Two Statessymbol at a time. We start by introducing extended rules, in which the contexts may be specified as regular expressions, instead of fixed words. We then prove that leftist systems with such extended rules and two-state graph control can simulate any arbitrary 2-tag system. Finally, we show how our c
43#
發(fā)表于 2025-3-29 02:40:55 | 只看該作者
44#
發(fā)表于 2025-3-29 03:36:52 | 只看該作者
45#
發(fā)表于 2025-3-29 08:37:57 | 只看該作者
An Intrinsically Universal Family of Causal Graph Dynamics time-steps, with respect to two physics-like symmetries: causality (there exists a bounded speed of information propagation) and shift-invariance (the rewriting acts everywhere the same). Intrinsic universality is the ability of the instance of a model to simulate all other instances, while preserv
46#
發(fā)表于 2025-3-29 11:50:30 | 只看該作者
47#
發(fā)表于 2025-3-29 17:37:17 | 只看該作者
48#
發(fā)表于 2025-3-29 20:20:09 | 只看該作者
Universality in Infinite Petri Nets expanding traversals of the cell array. One net is obtained via direct simulation of the cellular automaton while the other net simulates a Turing machine, which simulates the cellular automaton. They use cell models of 21 and 14 nodes, respectively, and simulate the cellular automaton in polynomia
49#
發(fā)表于 2025-3-30 02:19:40 | 只看該作者
50#
發(fā)表于 2025-3-30 05:55:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 17:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
香格里拉县| 疏附县| 兴化市| 故城县| 广元市| 大厂| 封丘县| 黑水县| 兴仁县| 阳西县| 苍梧县| 河东区| 嵊州市| 六安市| 深水埗区| 乌鲁木齐县| 武清区| 怀柔区| 皋兰县| 濮阳县| 织金县| 麻阳| 柳林县| 茶陵县| 道孚县| 岳普湖县| 华安县| 鄄城县| 曲松县| 常熟市| 光山县| 定边县| 米泉市| 志丹县| 汉阴县| 台北市| 易门县| 贵阳市| 区。| 宁南县| 康马县|