找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine-learning Techniques in Economics; New Tools for Predic Atin Basuchoudhary,James T. Bang,Tinni Sen Book 2017 The Author(s) 2017 Mach

[復(fù)制鏈接]
樓主: Espionage
11#
發(fā)表于 2025-3-23 10:22:54 | 只看該作者
Atin Basuchoudhary,James T. Bang,Tinni SenOffers a guide to how machine learning techniques can improve predictive power in answering economic questions.Provides R codes to help guide the researcher in applying machine learning techniques usi
12#
發(fā)表于 2025-3-23 14:00:26 | 只看該作者
13#
發(fā)表于 2025-3-23 18:57:10 | 只看該作者
Why This Book?,. However, most of all, these algorithms can eliminate variables that are unlikely to be causal. Policy makers can therefore get a sense of the most important policy levers to change the path of growth.
14#
發(fā)表于 2025-3-23 23:41:00 | 只看該作者
15#
發(fā)表于 2025-3-24 03:00:06 | 只看該作者
2191-5504 ing itself is not a new idea, advances in computing technology combined with a dawning realization of its applicability to economic questions makes it a new tool for economists.?.978-3-319-69013-1978-3-319-69014-8Series ISSN 2191-5504 Series E-ISSN 2191-5512
16#
發(fā)表于 2025-3-24 09:26:48 | 只看該作者
2191-5504 e the researcher in applying machine learning techniques usiThis book develops a machine-learning framework for predicting economic growth. It can also be considered as a?primer for using machine learning (also known as data mining or data analytics) to answer economic questions. While machine learn
17#
發(fā)表于 2025-3-24 13:47:22 | 只看該作者
Book 2017 known as data mining or data analytics) to answer economic questions. While machine learning itself is not a new idea, advances in computing technology combined with a dawning realization of its applicability to economic questions makes it a new tool for economists.?.
18#
發(fā)表于 2025-3-24 18:04:50 | 只看該作者
19#
發(fā)表于 2025-3-24 21:35:33 | 只看該作者
Methodology,scribe the process through which individual variables can be rank ordered according to their predictive power. This is followed by a description of how the reader might discern the effect of any one of these variables on the target variable, i.e. growth and recessions.
20#
發(fā)表于 2025-3-25 00:00:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新田县| 长治市| 齐河县| 富锦市| 修水县| 双江| 荣成市| 卓资县| 宝兴县| 沙雅县| 桦甸市| 曲阜市| 那坡县| 什邡市| 全南县| 壶关县| 西贡区| 尼勒克县| 丹东市| 彰化县| 陕西省| 吴江市| 涡阳县| 日喀则市| 隆昌县| 柳州市| 莱西市| 宜川县| 土默特左旗| 芮城县| 新泰市| 镇江市| 清苑县| 信丰县| 普定县| 银川市| 江北区| 平武县| 临高县| 盐源县| 独山县|