找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine and Deep Learning Algorithms and Applications; Uday Shankar Shanthamallu,Andreas Spanias Book 2022 Springer Nature Switzerland AG

[復(fù)制鏈接]
查看: 53746|回復(fù): 40
樓主
發(fā)表于 2025-3-21 19:07:37 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine and Deep Learning Algorithms and Applications
編輯Uday Shankar Shanthamallu,Andreas Spanias
視頻videohttp://file.papertrans.cn/621/620799/620799.mp4
叢書名稱Synthesis Lectures on Signal Processing
圖書封面Titlebook: Machine and Deep Learning Algorithms and Applications;  Uday Shankar Shanthamallu,Andreas Spanias Book 2022 Springer Nature Switzerland AG
描述This book introduces basic machine learning concepts and applications for a broad audience that includes students, faculty, and industry practitioners. We begin by describing how machine learning provides capabilities to computers and embedded systems to learn from data. A typical machine learning algorithm involves training, and generally the performance of a machine learning model improves with more training data. Deep learning is a sub-area of machine learning that involves extensive use of layers of artificial neural networks typically trained on massive amounts of data. Machine and deep learning methods are often used in contemporary data science tasks to address the growing data sets and detect, cluster, and classify data patterns. Although machine learning commercial interest has grown relatively recently, the roots of machine learning go back to decades ago. We note that nearly all organizations, including industry, government, defense, and health, are using machine learning toaddress a variety of needs and applications. The machine learning paradigms presented can be broadly divided into the following three categories: supervised learning, unsupervised learning, and semi-s
出版日期Book 2022
版次1
doihttps://doi.org/10.1007/978-3-031-03758-0
isbn_softcover978-3-031-03748-1
isbn_ebook978-3-031-03758-0Series ISSN 1932-1236 Series E-ISSN 1932-1694
issn_series 1932-1236
copyrightSpringer Nature Switzerland AG 2022
The information of publication is updating

書目名稱Machine and Deep Learning Algorithms and Applications影響因子(影響力)




書目名稱Machine and Deep Learning Algorithms and Applications影響因子(影響力)學(xué)科排名




書目名稱Machine and Deep Learning Algorithms and Applications網(wǎng)絡(luò)公開度




書目名稱Machine and Deep Learning Algorithms and Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine and Deep Learning Algorithms and Applications被引頻次




書目名稱Machine and Deep Learning Algorithms and Applications被引頻次學(xué)科排名




書目名稱Machine and Deep Learning Algorithms and Applications年度引用




書目名稱Machine and Deep Learning Algorithms and Applications年度引用學(xué)科排名




書目名稱Machine and Deep Learning Algorithms and Applications讀者反饋




書目名稱Machine and Deep Learning Algorithms and Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:26:08 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:04:51 | 只看該作者
Machine and Deep Learning Applications,mobile devices with access to cloud computing. While cloud computing provides the necessary computational power to train deep learning models, trained models can be easily deployed in the cloud or on embedded devices at the edge of the cloud to carry out the inference.
地板
發(fā)表于 2025-3-22 06:49:56 | 只看該作者
5#
發(fā)表于 2025-3-22 10:31:18 | 只看該作者
6#
發(fā)表于 2025-3-22 16:35:30 | 只看該作者
Supervised Learning,the ground truth for samples contained in the training, validation, and test data sets. Ground truth represents “true” or “correct” labels for the input dataset. Expert help may be needed to obtain the correct labels for the data (medical image labeling, for example). The ML model is “trained” using
7#
發(fā)表于 2025-3-22 19:46:21 | 只看該作者
8#
發(fā)表于 2025-3-22 21:40:05 | 只看該作者
Neural Networks and Deep Learning,g, and different architectures. Artificial neural networks are powerful pattern recognition machines, and they have proved to be the most successful. Neural networks and deep learning are quite successful at end-to-end learning, and they do not require feature engineering as in traditional machine l
9#
發(fā)表于 2025-3-23 02:57:27 | 只看該作者
10#
發(fā)表于 2025-3-23 08:09:15 | 只看該作者
Conclusion and Future Directions,edge and bibliography on machine learning and neural networks concepts to a reader with minimal background in machine learning. We started with the fundamental learning paradigms in ML and explored the sub-categories in each. Supervised learning, unsupervised learning, and semi-supervised learning a
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 02:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
云梦县| 榆林市| 织金县| 遵义市| 台前县| 汾阳市| 大同县| 五华县| 区。| 瑞金市| 馆陶县| 建瓯市| 毕节市| 蕲春县| 东平县| 洞口县| 桃园县| 四子王旗| 团风县| 寿阳县| 朝阳市| 加查县| 静乐县| 永和县| 长阳| 桂东县| 瓮安县| 奎屯市| 郑州市| 汪清县| 武乡县| 唐河县| 汉阴县| 安平县| 蒙自县| 上饶市| 广西| 乌拉特中旗| 卢龙县| 凤凰县| 航空|