找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Translation; 15th China Conferenc Shujian Huang,Kevin Knight Conference proceedings 2019 Springer Nature Singapore Pte Ltd. 2019 ar

[復(fù)制鏈接]
樓主: obsess
21#
發(fā)表于 2025-3-25 06:55:07 | 只看該作者
Jiaxin Zhai,Zhengtao Yu,Shengxiang Gao,Zhenhan Wang,Liuqing Puto develop some of the content through their own examples anThe Subject A little explanation is in order for our choice of the title Linear Opti- 1 mization (and corresponding terminology) for what has traditionally been called Linear Programming.Theword programming in this context can be confusing
22#
發(fā)表于 2025-3-25 09:38:36 | 只看該作者
Yulin Zhang,Chong Feng,Hongzheng Lito develop some of the content through their own examples anThe Subject A little explanation is in order for our choice of the title Linear Opti- 1 mization (and corresponding terminology) for what has traditionally been called Linear Programming.Theword programming in this context can be confusing
23#
發(fā)表于 2025-3-25 14:34:54 | 只看該作者
Kehai Chen,Rui Wang,Masao Utiyama,Eiichiro Sumitanally been called Linear Programming.Theword programming in this context can be confusing and/or misleading to students. Linear programming problems are referred to as optimization problems but the general term linear p- gramming remains. This can cause people unfamiliar with the subject to think th
24#
發(fā)表于 2025-3-25 19:50:48 | 只看該作者
25#
發(fā)表于 2025-3-25 23:15:40 | 只看該作者
26#
發(fā)表于 2025-3-26 01:32:30 | 只看該作者
27#
發(fā)表于 2025-3-26 05:13:40 | 只看該作者
28#
發(fā)表于 2025-3-26 08:53:21 | 只看該作者
Improving Bilingual Lexicon Induction on Distant Language Pairs,y, current solutions perform terribly on distant language pairs. To address this problem, we analyze existing models for the lexicon induction task of distant language pairs, such as English-Chinese. We propose an framework for the task with improved preprocessing, mapping and inference accordingly.
29#
發(fā)表于 2025-3-26 13:57:51 | 只看該作者
Improving Quality Estimation of Machine Translation by Using Pre-trained Language Representation,ll suffers heavily from the problem that the quality annotation data remain expensive and small. In this paper, we focus on overcoming the limitation of QE data and explore to utilize the high level latent features learned by the pre-trained language models to reduce the model’s dependence on QE dat
30#
發(fā)表于 2025-3-26 18:52:35 | 只看該作者
Incorporating Syntactic Knowledge in Neural Quality Estimation for Machine Translation, on neural networks have certain capability of implicitly learning the syntactic information from sentence-aligned parallel corpus. However, they still fail to capture the deep structural syntactic details of the sentences. This paper proposes a method that explicitly incorporates source syntax in n
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 05:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
稻城县| 布尔津县| 会宁县| 乌拉特中旗| 江安县| 封丘县| 兰州市| 丹寨县| 驻马店市| 阳泉市| 卢氏县| 镇雄县| 玉田县| 南京市| 县级市| 彝良县| 比如县| 临高县| 凌云县| 金乡县| 九龙坡区| 海丰县| 义马市| 朝阳县| 临海市| 灯塔市| 镇宁| 澄城县| 西林县| 商都县| 区。| 龙州县| 北辰区| 江安县| 鸡泽县| 南召县| 久治县| 安图县| 佛冈县| 泾川县| 曲阳县|