找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Translation; 16th China Conferenc Junhui Li,Andy Way Conference proceedings 2020 Springer Nature Singapore Pte Ltd. 2020 artificial

[復(fù)制鏈接]
樓主: 貪吃的人
21#
發(fā)表于 2025-3-25 03:55:37 | 只看該作者
22#
發(fā)表于 2025-3-25 11:10:46 | 只看該作者
23#
發(fā)表于 2025-3-25 13:02:34 | 只看該作者
Transfer Learning for Chinese-Lao Neural Machine Translation with Linguistic Similarity,guistic differences, resulting in poor performance of Chinese-Lao neural machine translation (NMT) task. However, compared with the Chinese-Lao language pair, there are considerable cross-lingual similarities between Thai-Lao languages. According to these features, we propose a novel NMT approach. W
24#
發(fā)表于 2025-3-25 16:21:14 | 只看該作者
MTNER: A Corpus for Mongolian Tourism Named Entity Recognition,zation names. However, there is still a lack of data to identify travel-related named entities, especially in Mongolian. In this paper, we introduce a newly corpus for Mongolian Tourism Named Entity Recognition (MTNER), consisting of 16,000 sentences annotated with 18 entity types. We trained in-dom
25#
發(fā)表于 2025-3-25 23:27:06 | 只看該作者
Unsupervised Machine Translation Quality Estimation in Black-Box Setting,ence. QE is an important component in making machine translation useful in real-world applications. Existing approaches require large amounts of expert annotated data. Recently, there are some trials to perform QE in an unsupervised manner, but these methods are based on glass-box features which dem
26#
發(fā)表于 2025-3-26 03:14:16 | 只看該作者
YuQ: A Chinese-Uyghur Medical-Domain Neural Machine Translation Dataset Towards Knowledge-Driven,NNs) require a large amount of training data with a high-quality annotation which is not available or expensive in the field of the medical domain. The research of medical domain neural machine translation (NMT) is largely limited due to the lack of parallel sentences that consist of medical domain
27#
發(fā)表于 2025-3-26 05:38:11 | 只看該作者
28#
發(fā)表于 2025-3-26 09:26:53 | 只看該作者
29#
發(fā)表于 2025-3-26 14:48:38 | 只看該作者
30#
發(fā)表于 2025-3-26 17:53:43 | 只看該作者
Tsinghua University Neural Machine Translation Systems for CCMT 2020,the Chinese . English translation tasks. Our systems are based on Transformer architectures and we verified that deepening the encoder can achieve better results. All models are trained in a distributed way. We employed several data augmentation methods, including knowledge distillation, back-transl
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 21:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
北碚区| 唐山市| 阿尔山市| 东方市| 浏阳市| 财经| 闻喜县| 大田县| 漳浦县| 公主岭市| 湘乡市| 巴里| 吉木萨尔县| 宜阳县| 都匀市| 和平县| 德兴市| 花莲市| 黄山市| 嵊州市| 南京市| 读书| 罗甸县| 闻喜县| 宜良县| 玉环县| 岫岩| 抚松县| 昭苏县| 鹿邑县| 钟祥市| 海丰县| 通河县| 景宁| 广东省| 巧家县| 天等县| 靖宇县| 津南区| 东丽区| 顺义区|