找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Translation; 18th China Conferenc Tong Xiao,Juan Pino Conference proceedings 2022 The Editor(s) (if applicable) and The Author(s),

[復(fù)制鏈接]
查看: 26100|回復(fù): 54
樓主
發(fā)表于 2025-3-21 18:03:21 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Translation
副標(biāo)題18th China Conferenc
編輯Tong Xiao,Juan Pino
視頻videohttp://file.papertrans.cn/621/620773/620773.mp4
叢書名稱Communications in Computer and Information Science
圖書封面Titlebook: Machine Translation; 18th China Conferenc Tong Xiao,Juan Pino Conference proceedings 2022 The Editor(s) (if applicable) and The Author(s),
描述This book constitutes the refereed proceedings of the 18th China Conference?on.Machine Translation, CCMT 2022, held in Lhasa, China,?during August 6–10, 2022..The 16 full papers were included in this book were carefully reviewed and?selected from 73 submissions..
出版日期Conference proceedings 2022
關(guān)鍵詞artificial intelligence; automata theory; computational linguistics; computer aided language translatio
版次1
doihttps://doi.org/10.1007/978-981-19-7960-6
isbn_softcover978-981-19-7959-0
isbn_ebook978-981-19-7960-6Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Machine Translation影響因子(影響力)




書目名稱Machine Translation影響因子(影響力)學(xué)科排名




書目名稱Machine Translation網(wǎng)絡(luò)公開度




書目名稱Machine Translation網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Translation被引頻次




書目名稱Machine Translation被引頻次學(xué)科排名




書目名稱Machine Translation年度引用




書目名稱Machine Translation年度引用學(xué)科排名




書目名稱Machine Translation讀者反饋




書目名稱Machine Translation讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:36:20 | 只看該作者
CCMT 2022 Translation Quality Estimation Task, found that pre-training the predictor with the semantic textual similarity (STS) task in the parallel corpus and using augmented training data constructed by different machine translation (MT) engines can improve the prediction effect of the Human-targeted Translation Edit Rate (HTER) in both Chinese-English and English-Chinese tasks.
板凳
發(fā)表于 2025-3-22 01:23:40 | 只看該作者
地板
發(fā)表于 2025-3-22 05:29:59 | 只看該作者
5#
發(fā)表于 2025-3-22 09:05:07 | 只看該作者
,Multi-strategy Enhanced Neural Machine Translation for?Chinese Minority Languages,d Ensemble. Our enhancement experiments have proved the effectiveness of above-mentioned strategies. We submit enhanced systems as primary systems for the three tracks. In addition, we train contrast models using additional bilingual data and submit results generated by these contrast models.
6#
發(fā)表于 2025-3-22 13:44:00 | 只看該作者
,An Improved Multi-task Approach to?Pre-trained Model Based MT Quality Estimation,r model. We show that the post-editing sub-task is much more in-formative and the mBART is superior to other pre-trained models. Experiments on WMT2021 English-German and English-Chinese QE datasets showed that the proposed method achieves 1.2%–2.1% improvements in the strong sentence-level QE baseline.
7#
發(fā)表于 2025-3-22 20:17:30 | 只看該作者
8#
發(fā)表于 2025-3-23 01:10:57 | 只看該作者
,Effective Data Augmentation Methods for?CCMT 2022,ormer model with several effective data augmentation strategies which are adopted to improve the quality of translation. Experiments show that data augmentation methods have a good impact on the baseline system and aim to enhance the robustness of the model.
9#
發(fā)表于 2025-3-23 04:04:15 | 只看該作者
,NJUNLP’s Submission for CCMT 2022 Quality Estimation Task,hich achieves outstanding success in many NLP tasks in order to improve performance. With the purpose of better utilizing parallel data, several types of pseudo data are employed in our method as well. In addition, we also ensemble several models to promote the final results.
10#
發(fā)表于 2025-3-23 07:05:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 20:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
文登市| 山阳县| 四子王旗| 綦江县| 阿尔山市| 峡江县| 和平区| 河间市| 曲阳县| 北辰区| 金阳县| 娄底市| 潍坊市| 萝北县| 铅山县| 葫芦岛市| 天门市| 肥西县| 锦州市| 博客| 仲巴县| 怀化市| 昆山市| 若尔盖县| 驻马店市| 衡水市| 鄂温| 大邑县| 满城县| 郧西县| 大英县| 鄂伦春自治旗| 酒泉市| 和林格尔县| 宜君县| 娱乐| 拉孜县| 清徐县| 九龙城区| 延边| 新源县|