找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Translation; 17th China Conferenc Jinsong Su,Rico Sennrich Conference proceedings 2021 Springer Nature Singapore Pte Ltd. 2021 arti

[復(fù)制鏈接]
樓主: 柳條筐
31#
發(fā)表于 2025-3-26 21:17:27 | 只看該作者
32#
發(fā)表于 2025-3-27 03:39:14 | 只看該作者
Communications in Computer and Information Sciencehttp://image.papertrans.cn/m/image/620772.jpg
33#
發(fā)表于 2025-3-27 06:59:05 | 只看該作者
34#
發(fā)表于 2025-3-27 10:09:45 | 只看該作者
,SAU’S Submission for CCMT 2021 Quality Estimation Task,n to key words, we use the attention mechanism and gate module to fuse the last hidden state and pooler output of XLM-R model to generate more accurate prediction. In addition, we use the Predictor-Estimator architecture model to integrate with our model to improve the results. Experiments show that this is a simple and effective ensemble method.
35#
發(fā)表于 2025-3-27 15:47:41 | 只看該作者
36#
發(fā)表于 2025-3-27 19:29:43 | 只看該作者
37#
發(fā)表于 2025-3-28 00:44:35 | 只看該作者
38#
發(fā)表于 2025-3-28 06:07:44 | 只看該作者
,BJTU-Toshiba’s Submission to CCMT 2021 QE and APE Task,nthetic data by different data augmentation methods, i.e. forward translation, round-trip translation and multi-source denoising autoencoder. Multi-model ensemble is adopted in both tasks. Experiment results on the development set show high accuracy on both QE and APE tasks, demonstrating the effectiveness of our proposed methods.
39#
發(fā)表于 2025-3-28 06:28:59 | 只看該作者
,ISTIC’s Neural Machine Translation System for CCMT’ 2021,ective strategies are adopted to improve the quality of translation, such as corpus filtering, back translation, data augmentation, context-based system combination, model averaging, model ensemble, and reranking. The paper presents the system performance under different parameter settings.
40#
發(fā)表于 2025-3-28 12:51:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昆明市| 措勤县| 沁阳市| 蓝田县| 汝城县| 雅安市| 晋江市| 南昌市| 凌云县| 太原市| 平潭县| 奉节县| 台南县| 通江县| 永登县| 肇源县| 长葛市| 吴川市| 永泰县| 晋中市| 迁西县| 石泉县| 新巴尔虎右旗| 泊头市| 怀柔区| 玉树县| 沙坪坝区| 东阿县| 龙泉市| 彰武县| 新野县| 韩城市| 天台县| 双柏县| 庆阳市| 义马市| 莒南县| 三都| 靖安县| 延寿县| 广州市|