找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning: ECML 2003; 14th European Confer Nada Lavra?,Dragan Gamberger,Ljup?o Todorovski Conference proceedings 2003 Springer-Verla

[復(fù)制鏈接]
樓主: Sediment
21#
發(fā)表于 2025-3-25 06:01:11 | 只看該作者
22#
發(fā)表于 2025-3-25 09:24:37 | 只看該作者
From Knowledge-Based to Skill-Based Systems: Sailing as a Machine Learning Challengegoal was to make an adaptive system that would help a single handed sailor to go faster on average in a race. Presently, after five years of development and a number of sea trials, we have a commercial system available (www.robosail.com). It is a hybrid system using agent technology, machine learnin
23#
發(fā)表于 2025-3-25 11:54:18 | 只看該作者
24#
發(fā)表于 2025-3-25 17:33:48 | 只看該作者
Next Generation Data Mining Tools: Power Laws and Self-similarity for Graphs, Streams and Traditionatribution of a company’s customers in geographical space? How long should we expect a nearest-neighbor search to take, when there are 100 attributes per patient or customer record? The traditional assumptions (uniformity, independence, Poisson arrivals, Gaussian distributions), often fail miserably.
25#
發(fā)表于 2025-3-25 23:43:44 | 只看該作者
26#
發(fā)表于 2025-3-26 03:48:52 | 只看該作者
Support Vector Machines with Example Dependent Costsow only costs depending on the classes of the examples that are used for learning. As an extension of class dependent costs, we consider costs that are example, i.e. feature and class dependent. We present a natural cost-sensitive extension of the support vector machine (SVM) and discuss its relatio
27#
發(fā)表于 2025-3-26 05:19:56 | 只看該作者
Abalearn: A Risk-Sensitive Approach to Self-play Learning in Abaloneabeled training examples, deep searches or exposure to competent play..Our approach is based on a reinforcement learning algorithm that is risk-seeking, since defensive players in Abalone tend to never end a game..We show that it is the risk-sensitivity that allows a successful self-play training. W
28#
發(fā)表于 2025-3-26 11:17:35 | 只看該作者
Life Cycle Modeling of News Events Using Aging Theoryife span. A news event becomes popular with a burst of news reports, and it fades away with time. We incorporate the proposed aging theory into the traditional single-pass clustering algorithm to model life spans of news events. Experiment results show that the proposed method has fairly good perfor
29#
發(fā)表于 2025-3-26 13:12:13 | 只看該作者
Unambiguous Automata Inference by Means of State-Merging Methodsting all examples and rejecting all counter-examples. We study unambiguous automata (UFA) inference, an intermediate framework between the hard nondeterministic automata (NFA) inference and the well known deterministic automata (DFA) inference. The search space for UFA inference is described and ori
30#
發(fā)表于 2025-3-26 18:18:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 16:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
砚山县| 乌兰县| 诏安县| 宾阳县| 曲沃县| 冕宁县| 忻州市| 永安市| 隆回县| 博爱县| 阿拉善右旗| 临沂市| 东山县| 云林县| 凌云县| 高邮市| 武川县| 石首市| 长兴县| 邯郸县| 仁布县| 平舆县| 延吉市| 高清| 穆棱市| 武山县| 湄潭县| 余庆县| 遂平县| 清原| 柳林县| 胶州市| 南投县| 通城县| 夏河县| 和硕县| 镇沅| 泽州县| 周至县| 兴隆县| 同仁县|