找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning: ECML 2003; 14th European Confer Nada Lavra?,Dragan Gamberger,Ljup?o Todorovski Conference proceedings 2003 Springer-Verla

[復制鏈接]
樓主: Sediment
21#
發(fā)表于 2025-3-25 06:01:11 | 只看該作者
22#
發(fā)表于 2025-3-25 09:24:37 | 只看該作者
From Knowledge-Based to Skill-Based Systems: Sailing as a Machine Learning Challengegoal was to make an adaptive system that would help a single handed sailor to go faster on average in a race. Presently, after five years of development and a number of sea trials, we have a commercial system available (www.robosail.com). It is a hybrid system using agent technology, machine learnin
23#
發(fā)表于 2025-3-25 11:54:18 | 只看該作者
24#
發(fā)表于 2025-3-25 17:33:48 | 只看該作者
Next Generation Data Mining Tools: Power Laws and Self-similarity for Graphs, Streams and Traditionatribution of a company’s customers in geographical space? How long should we expect a nearest-neighbor search to take, when there are 100 attributes per patient or customer record? The traditional assumptions (uniformity, independence, Poisson arrivals, Gaussian distributions), often fail miserably.
25#
發(fā)表于 2025-3-25 23:43:44 | 只看該作者
26#
發(fā)表于 2025-3-26 03:48:52 | 只看該作者
Support Vector Machines with Example Dependent Costsow only costs depending on the classes of the examples that are used for learning. As an extension of class dependent costs, we consider costs that are example, i.e. feature and class dependent. We present a natural cost-sensitive extension of the support vector machine (SVM) and discuss its relatio
27#
發(fā)表于 2025-3-26 05:19:56 | 只看該作者
Abalearn: A Risk-Sensitive Approach to Self-play Learning in Abaloneabeled training examples, deep searches or exposure to competent play..Our approach is based on a reinforcement learning algorithm that is risk-seeking, since defensive players in Abalone tend to never end a game..We show that it is the risk-sensitivity that allows a successful self-play training. W
28#
發(fā)表于 2025-3-26 11:17:35 | 只看該作者
Life Cycle Modeling of News Events Using Aging Theoryife span. A news event becomes popular with a burst of news reports, and it fades away with time. We incorporate the proposed aging theory into the traditional single-pass clustering algorithm to model life spans of news events. Experiment results show that the proposed method has fairly good perfor
29#
發(fā)表于 2025-3-26 13:12:13 | 只看該作者
Unambiguous Automata Inference by Means of State-Merging Methodsting all examples and rejecting all counter-examples. We study unambiguous automata (UFA) inference, an intermediate framework between the hard nondeterministic automata (NFA) inference and the well known deterministic automata (DFA) inference. The search space for UFA inference is described and ori
30#
發(fā)表于 2025-3-26 18:18:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 20:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
大兴区| 木里| 新竹县| 龙海市| 东港市| 石首市| 望都县| 莱芜市| 淳化县| 乌拉特中旗| 通河县| 凤台县| 明水县| 三都| 玉门市| 长顺县| 四川省| 临沂市| 积石山| 鹤山市| 南康市| 河西区| 汶上县| 山西省| 德庆县| 股票| 公安县| 韩城市| 巴林右旗| 阿拉尔市| 南城县| 乐业县| 常熟市| 南丰县| 顺昌县| 贺州市| 湘潭县| 拉萨市| 盐山县| 武义县| 东台市|