找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning-based Prediction of Missing Parts for Assembly; Fabian Steinberg Book 2024 The Editor(s) (if applicable) and The Author(s

[復(fù)制鏈接]
查看: 24868|回復(fù): 39
樓主
發(fā)表于 2025-3-21 20:05:37 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning-based Prediction of Missing Parts for Assembly
編輯Fabian Steinberg
視頻videohttp://file.papertrans.cn/621/620747/620747.mp4
叢書名稱Findings from Production Management Research
圖書封面Titlebook: Machine Learning-based Prediction of Missing Parts for Assembly;  Fabian Steinberg Book 2024 The Editor(s) (if applicable) and The Author(s
描述.Manufacturing companies face challenges in managing increasing process complexity while meeting demands for on-time delivery, particularly evident during critical processes like assembly. The early identification of potential missing parts at the beginning assembly emerges as a crucial strategy to uphold delivery commitments. This book embarks on developing machine learning-based prediction models to tackle this challenge. Through a systemic literature review, deficiencies in current predictive methodologies are highlighted, notably the underutilization of material data and a late prediction capability within the procurement process. Through case studies within the machine industry a significant influence of material data on the quality of models predicting missing parts from in-house production was verified. Further, a model for predicting delivery delays in the purchasing process was implemented, which makes it possible to predict potential missing parts from suppliers at the time of ordering. These advancements serve as indispensable tools for production planners and procurement professionals, empowering them to proactively address material availability challenges for assembly
出版日期Book 2024
關(guān)鍵詞Machine Learning; Production Planning and Control; Assembly; Prediction methods; Supervised Learning; Lea
版次1
doihttps://doi.org/10.1007/978-3-658-45033-5
isbn_softcover978-3-658-45032-8
isbn_ebook978-3-658-45033-5Series ISSN 3005-1649 Series E-ISSN 3005-1657
issn_series 3005-1649
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Fachmedien Wies
The information of publication is updating

書目名稱Machine Learning-based Prediction of Missing Parts for Assembly影響因子(影響力)




書目名稱Machine Learning-based Prediction of Missing Parts for Assembly影響因子(影響力)學(xué)科排名




書目名稱Machine Learning-based Prediction of Missing Parts for Assembly網(wǎng)絡(luò)公開度




書目名稱Machine Learning-based Prediction of Missing Parts for Assembly網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning-based Prediction of Missing Parts for Assembly被引頻次




書目名稱Machine Learning-based Prediction of Missing Parts for Assembly被引頻次學(xué)科排名




書目名稱Machine Learning-based Prediction of Missing Parts for Assembly年度引用




書目名稱Machine Learning-based Prediction of Missing Parts for Assembly年度引用學(xué)科排名




書目名稱Machine Learning-based Prediction of Missing Parts for Assembly讀者反饋




書目名稱Machine Learning-based Prediction of Missing Parts for Assembly讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:59:36 | 只看該作者
,Publication IV: Predicting Supplier Delays Utilizing Machine Learning—a Case Study in German ManufaA specific area that needs further attention is the prediction of late deliveries by suppliers. Recent approaches showed promising results but remained limited in their use of classification algorithms and struggled with the curse of dimensionality, making them less applicable to low-volume-high-variety production settings.
板凳
發(fā)表于 2025-3-22 04:12:12 | 只看該作者
https://doi.org/10.1007/978-3-658-45033-5Machine Learning; Production Planning and Control; Assembly; Prediction methods; Supervised Learning; Lea
地板
發(fā)表于 2025-3-22 04:41:29 | 只看該作者
978-3-658-45032-8The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Fachmedien Wies
5#
發(fā)表于 2025-3-22 09:16:25 | 只看該作者
6#
發(fā)表于 2025-3-22 14:51:43 | 只看該作者
7#
發(fā)表于 2025-3-22 18:33:14 | 只看該作者
,Publication II: Impact of Material Data in Assembly Delay Prediction—a Machine Learning-based Case Designing customized products for customer needs is a key characteristic of machine and plant manufacturers. Their manufacturing process typically consists of a design phase followed by planning and executing a production process of components required in the subsequent assembly. Production delays can lead to a delayed start of the assembly.
8#
發(fā)表于 2025-3-23 00:59:43 | 只看該作者
9#
發(fā)表于 2025-3-23 04:03:07 | 只看該作者
Introduction,racteristic is particularly noticeable in the products of machinery manufacturers, whose products typically consist of a large number of components designed to meet specific customer requirements to provide a customized solution for each customer. [1, 2]. In the globalized and internationalized proc
10#
發(fā)表于 2025-3-23 07:08:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
扬中市| 长沙市| 溧阳市| 浪卡子县| 五峰| 普定县| 出国| 贵溪市| 靖远县| 梨树县| 蒙山县| 青铜峡市| 本溪市| 平定县| 沈阳市| 双江| 本溪| 禄劝| 江北区| 石台县| 林周县| 赤壁市| 且末县| 高州市| 本溪| 静海县| 定南县| 乡城县| 柏乡县| 襄樊市| 麻栗坡县| 苍南县| 弋阳县| 四川省| 壤塘县| 开远市| 日喀则市| 岳池县| 四川省| 云龙县| 文安县|