找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning-Augmented Spectroscopies for Intelligent Materials Design; Nina Andrejevic Book 2022 The Editor(s) (if applicable) and Th

[復(fù)制鏈接]
查看: 43409|回復(fù): 39
樓主
發(fā)表于 2025-3-21 19:12:18 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning-Augmented Spectroscopies for Intelligent Materials Design
編輯Nina Andrejevic
視頻videohttp://file.papertrans.cn/621/620744/620744.mp4
概述Nominated as an outstanding PhD thesis by Massachusetts Institute of Technology.Introduces machine learning methods for neutron and photon scattering and spectroscopy.Identifies spectral signatures of
叢書名稱Springer Theses
圖書封面Titlebook: Machine Learning-Augmented Spectroscopies for Intelligent Materials Design;  Nina Andrejevic Book 2022 The Editor(s) (if applicable) and Th
描述.The thesis contains several pioneering results at the intersection of state-of-the-art materials characterization techniques and machine learning. The use of machine learning empowers the information extraction capability of neutron and photon spectroscopies. In particular, new knowledge and new physics insights to aid spectroscopic analysis may hold great promise for next-generation quantum technology. As a prominent example, the so-called proximity effect at topological material interfaces promises to enable spintronics without energy dissipation and quantum computing with fault tolerance, yet the characteristic spectral features to identify the proximity effect have long been elusive. The work presented within permits a fine resolution of its spectroscopic features and a determination of the proximity effect which could aid further experiments with improved interpretability. A few novel machine learning architectures are proposed in this thesis work which leverage the case when the data is scarce and utilize the internal symmetry of the system to improve the training quality. The work sheds light on future pathways to apply machine learning to augment experiments..
出版日期Book 2022
關(guān)鍵詞machine learning for materials characterization; machine learning Raman spectra; machine learning neut
版次1
doihttps://doi.org/10.1007/978-3-031-14808-8
isbn_softcover978-3-031-14810-1
isbn_ebook978-3-031-14808-8Series ISSN 2190-5053 Series E-ISSN 2190-5061
issn_series 2190-5053
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Machine Learning-Augmented Spectroscopies for Intelligent Materials Design影響因子(影響力)




書目名稱Machine Learning-Augmented Spectroscopies for Intelligent Materials Design影響因子(影響力)學(xué)科排名




書目名稱Machine Learning-Augmented Spectroscopies for Intelligent Materials Design網(wǎng)絡(luò)公開度




書目名稱Machine Learning-Augmented Spectroscopies for Intelligent Materials Design網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning-Augmented Spectroscopies for Intelligent Materials Design被引頻次




書目名稱Machine Learning-Augmented Spectroscopies for Intelligent Materials Design被引頻次學(xué)科排名




書目名稱Machine Learning-Augmented Spectroscopies for Intelligent Materials Design年度引用




書目名稱Machine Learning-Augmented Spectroscopies for Intelligent Materials Design年度引用學(xué)科排名




書目名稱Machine Learning-Augmented Spectroscopies for Intelligent Materials Design讀者反饋




書目名稱Machine Learning-Augmented Spectroscopies for Intelligent Materials Design讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:22:40 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:44:55 | 只看該作者
Nina AndrejevicNominated as an outstanding PhD thesis by Massachusetts Institute of Technology.Introduces machine learning methods for neutron and photon scattering and spectroscopy.Identifies spectral signatures of
地板
發(fā)表于 2025-3-22 06:36:25 | 只看該作者
5#
發(fā)表于 2025-3-22 11:47:07 | 只看該作者
Conclusion and Outlook,In this chapter, we summarize the primary contributions of this thesis work and offer a short perspective on the possible extensions of each study, concluding with a discussion of outstanding challenges and emerging approaches in the field.
6#
發(fā)表于 2025-3-22 14:58:16 | 只看該作者
https://doi.org/10.1007/978-3-031-14808-8machine learning for materials characterization; machine learning Raman spectra; machine learning neut
7#
發(fā)表于 2025-3-22 19:23:46 | 只看該作者
8#
發(fā)表于 2025-3-23 00:08:12 | 只看該作者
9#
發(fā)表于 2025-3-23 03:18:00 | 只看該作者
Nina Andrejevicrked control and multi-agent systems.Written by experts in tThis authored monograph presents a study on fundamental limits and robustness of stability and stabilization of time-delay systems, with an emphasis on time-varying delay, robust stabilization, and newly emerged areas such as networked cont
10#
發(fā)表于 2025-3-23 09:35:05 | 只看該作者
Introduction,ctural and dynamical properties at atomic to mesoscopic length scales. As advances at scientific user facilities enable the collection of ever larger data volumes in higher-dimensional parameter spaces, the design, analysis, and interpretation of such experiments becomes both increasingly valuable a
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 07:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
芒康县| 托里县| 隆安县| 聊城市| 吉林市| 阳新县| 中方县| 罗田县| 砀山县| 文昌市| 洛浦县| 如东县| 瑞丽市| 昌宁县| 伊金霍洛旗| 桓台县| 兰坪| 邛崃市| 布尔津县| 江永县| 金塔县| 瑞安市| 崇阳县| 镇坪县| 托里县| 南和县| 温州市| 莒南县| 罗田县| 乐昌市| 融水| 射洪县| 大关县| 灵川县| 武汉市| 肥东县| 景德镇市| 汨罗市| 柘城县| 津市市| 文山县|