找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning, Optimization, and Data Science; 8th International Co Giuseppe Nicosia,Varun Ojha,Renato Umeton Conference proceedings 202

[復(fù)制鏈接]
查看: 21342|回復(fù): 61
樓主
發(fā)表于 2025-3-21 16:13:45 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Machine Learning, Optimization, and Data Science
副標(biāo)題8th International Co
編輯Giuseppe Nicosia,Varun Ojha,Renato Umeton
視頻videohttp://file.papertrans.cn/621/620743/620743.mp4
叢書(shū)名稱Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Machine Learning, Optimization, and Data Science; 8th International Co Giuseppe Nicosia,Varun Ojha,Renato Umeton Conference proceedings 202
描述This two-volume set, LNCS 13810 and 13811,? constitutes the refereed proceedings of the 8th International Conference on Machine Learning, Optimization, and Data Science, LOD 2022, together with the papers of the Second Symposium on Artificial Intelligence and Neuroscience, ACAIN 2022.. The total of 84 full papers presented in this two-volume post-conference proceedings set was carefully reviewed and selected from 226 submissions. These research articles were written by leading scientists in the fields of machine learning, artificial intelligence, reinforcement learning, computational optimization, neuroscience, and data science presenting a substantial array of ideas, technologies, algorithms, methods, and applications.
出版日期Conference proceedings 2023
關(guān)鍵詞adaptive control systems; anomaly detection; artificial intelligence; automation; bayesian networks; big
版次1
doihttps://doi.org/10.1007/978-3-031-25599-1
isbn_softcover978-3-031-25598-4
isbn_ebook978-3-031-25599-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Machine Learning, Optimization, and Data Science影響因子(影響力)




書(shū)目名稱Machine Learning, Optimization, and Data Science影響因子(影響力)學(xué)科排名




書(shū)目名稱Machine Learning, Optimization, and Data Science網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Machine Learning, Optimization, and Data Science網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Machine Learning, Optimization, and Data Science被引頻次




書(shū)目名稱Machine Learning, Optimization, and Data Science被引頻次學(xué)科排名




書(shū)目名稱Machine Learning, Optimization, and Data Science年度引用




書(shū)目名稱Machine Learning, Optimization, and Data Science年度引用學(xué)科排名




書(shū)目名稱Machine Learning, Optimization, and Data Science讀者反饋




書(shū)目名稱Machine Learning, Optimization, and Data Science讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:26:02 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:48:10 | 只看該作者
,Machine Learning Approaches for?Predicting Crystal Systems: A Brief Review and?a?Case Study,rediction, grouped according to the input features they use to construct the prediction model. It also presents the results obtained in predicting the crystal system of polycrystalline compounds, by using the lattice parameters to train some learning models.
地板
發(fā)表于 2025-3-22 06:00:56 | 只看該作者
5#
發(fā)表于 2025-3-22 09:57:07 | 只看該作者
,Local Optimisation of?Nystr?m Samples Through Stochastic Gradient Descent, we discuss how Nystr?m samples can be efficiently optimised through stochastic gradient descent. We perform numerical experiments which demonstrate that the local minimisation of the radial SKD yields Nystr?m samples with improved Nystr?m approximation accuracy in terms of trace, Frobenius and spectral norms.
6#
發(fā)表于 2025-3-22 14:14:39 | 只看該作者
Conference proceedings 2023rticles were written by leading scientists in the fields of machine learning, artificial intelligence, reinforcement learning, computational optimization, neuroscience, and data science presenting a substantial array of ideas, technologies, algorithms, methods, and applications.
7#
發(fā)表于 2025-3-22 17:25:17 | 只看該作者
8#
發(fā)表于 2025-3-22 23:18:55 | 只看該作者
9#
發(fā)表于 2025-3-23 01:26:00 | 只看該作者
10#
發(fā)表于 2025-3-23 08:54:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 23:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
拉孜县| 新密市| 韶关市| 和政县| 凭祥市| 铜梁县| 德庆县| 阳东县| 佛学| 交口县| 临江市| 磴口县| 乌什县| 绥阳县| 东乡县| 龙川县| 清流县| 卢龙县| 大埔区| 会同县| 松桃| 阿拉善右旗| 新乡市| 陵水| 襄樊市| 司法| 内丘县| 桦川县| 合江县| 固原市| 安丘市| 嵩明县| 东港市| 丰城市| 石泉县| 宝坻区| 邻水| 纳雍县| 福海县| 珲春市| 巴塘县|