找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning, Optimization, and Data Science; 4th International Co Giuseppe Nicosia,Panos Pardalos,Vincenzo Sciacca Conference proceedi

[復(fù)制鏈接]
查看: 41514|回復(fù): 67
樓主
發(fā)表于 2025-3-21 19:32:41 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning, Optimization, and Data Science
副標(biāo)題4th International Co
編輯Giuseppe Nicosia,Panos Pardalos,Vincenzo Sciacca
視頻videohttp://file.papertrans.cn/621/620737/620737.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Machine Learning, Optimization, and Data Science; 4th International Co Giuseppe Nicosia,Panos Pardalos,Vincenzo Sciacca Conference proceedi
描述This book constitutes the post-conference proceedings of the 4th International Conference on Machine Learning, Optimization, and Data Science, LOD 2018, held?in Volterra, Italy, in September 2018..The 46 full papers presented were carefully reviewed and selected from 126 submissions. The papers cover topics in the field of machine learning, artificial?intelligence,? reinforcement learning, computational optimization and data science presenting a substantial array of ideas, technologies, algorithms, methods?and applications..
出版日期Conference proceedings 2019
關(guān)鍵詞deep learning; machine learning; reinforcement learning; neural networks; deep reinforcement learning; op
版次1
doihttps://doi.org/10.1007/978-3-030-13709-0
isbn_softcover978-3-030-13708-3
isbn_ebook978-3-030-13709-0Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Machine Learning, Optimization, and Data Science影響因子(影響力)




書目名稱Machine Learning, Optimization, and Data Science影響因子(影響力)學(xué)科排名




書目名稱Machine Learning, Optimization, and Data Science網(wǎng)絡(luò)公開度




書目名稱Machine Learning, Optimization, and Data Science網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning, Optimization, and Data Science被引頻次




書目名稱Machine Learning, Optimization, and Data Science被引頻次學(xué)科排名




書目名稱Machine Learning, Optimization, and Data Science年度引用




書目名稱Machine Learning, Optimization, and Data Science年度引用學(xué)科排名




書目名稱Machine Learning, Optimization, and Data Science讀者反饋




書目名稱Machine Learning, Optimization, and Data Science讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:51:57 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:10:00 | 只看該作者
地板
發(fā)表于 2025-3-22 07:52:59 | 只看該作者
Feature Based Multivariate Data Imputation,ent experimental settings: ., . and . with 25% missing data in the test set over five-fold cross validation. Furthermore, the proposed model has straightforward implementation and can easily incorporate other imputation techniques.
5#
發(fā)表于 2025-3-22 11:25:33 | 只看該作者
Information-Theoretic Feature Selection Using High-Order Interactions,erived from information theory. We show that our method is able to find interactions which remain undetected when using standard methods. We prove some theoretical properties of the introduced criterion and interaction information.
6#
發(fā)表于 2025-3-22 14:05:52 | 只看該作者
7#
發(fā)表于 2025-3-22 21:02:32 | 只看該作者
Generating Term Weighting Schemes Through Genetic Programming, generates a new TWS based on the performance of the learning method. We experience the generated TWSs on three well-known benchmarks. Our study shows that even early generated formulas are quite competitive with the state-of-the-art TWSs and even in some cases outperform them.
8#
發(fā)表于 2025-3-23 01:12:52 | 只看該作者
Adaptive Dimensionality Reduction in Multiobjective Optimization with Multiextremal Criteria,ion accelerating the search is presented. Efficiency of the proposed approach is demonstrated on the base of representative computational experiment on a test class of bi-criterial MCO problems with essentially multiextremal criteria.
9#
發(fā)表于 2025-3-23 04:33:21 | 只看該作者
Optimization of Neural Network Training with ELM Based on the Iterative Hybridization of Differentiaining/Testing) obtains the best results, followed by DECC-G and MOS. All three algorithms obtain better results than M-ELM. The experimentation was carried out on 38 classification problems recognized by the scientific community, while Friedman and Wilcoxon nonparametric statistical tests support the results.
10#
發(fā)表于 2025-3-23 08:34:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巩留县| 龙岩市| 邢台市| 牙克石市| 繁峙县| 定边县| 东安县| 新营市| 双桥区| 凤冈县| 石林| 金川县| 祥云县| 剑河县| 曲松县| 华容县| 高州市| 松滋市| 济阳县| 吉安市| 珲春市| 克什克腾旗| 盱眙县| 阜新市| 祥云县| 福安市| 仲巴县| 辽阳县| 渭南市| 正蓝旗| 米易县| 西乡县| 奉化市| 霍城县| 手机| 明溪县| 柳江县| 周至县| 河北区| 铁力市| 宜春市|