找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning, Optimization, and Data Science; 9th International Co Giuseppe Nicosia,Varun Ojha,Renato Umeton Conference proceedings 202

[復(fù)制鏈接]
樓主: Truman
51#
發(fā)表于 2025-3-30 12:14:11 | 只看該作者
Integrated Human-AI Forecasting for Preventive Maintenance Task Duration Estimationrom two fleet maintenance facilities in Canada, containing more than 13,000 anonymized historical ship work orders (WO) ranging from 2017 to 2022. We used supervised learning algorithms to forecast the preventive maintenance task duration on this data, with and without expert task duration estimates
52#
發(fā)表于 2025-3-30 14:22:47 | 只看該作者
A Proximal Algorithm for?Network Slimming CNNs is optional. Using Kurdyka-?ojasiewicz assumptions, we establish global convergence of proximal NS. Lastly, we validate the efficacy of the proposed algorithm on VGGNet, DenseNet and ResNet on CIFAR 10/100. Our experiments demonstrate that after one round of training, proximal NS yields a CNN
53#
發(fā)表于 2025-3-30 18:09:50 | 只看該作者
54#
發(fā)表于 2025-3-30 21:12:02 | 只看該作者
Alternating Mixed-Integer Programming and?Neural Network Training for?Approximating Stochastic Two-Sour approach with the example of computing operating points in power systems by showing that the alternating approach provides improved first-stage decisions and a tighter approximation between the expected objective and its neural network approximation.
55#
發(fā)表于 2025-3-31 01:12:04 | 只看該作者
56#
發(fā)表于 2025-3-31 05:49:41 | 只看該作者
57#
發(fā)表于 2025-3-31 12:38:24 | 只看該作者
58#
發(fā)表于 2025-3-31 14:41:58 | 只看該作者
A Hybrid Steady-State Genetic Algorithm for?the?Minimum Conflict Spanning Tree Problemle 12 instances of type 1 benchmark instances whose conflict solutions are not known show that the proposed hybrid approach hSSGA is able to find better solution quality in comparison to state-of-the-art approaches. Also, hSSGA discovers new values on 8 instances out of 12 instances of type 1.
59#
發(fā)表于 2025-3-31 21:16:56 | 只看該作者
Evaluation of Selected Autoencoders in the Context of End-User Experience Managementerature as well-suited for detecting anomalies applied in this paper to hardware telemetry: Autoencoder (AE), Variational Autoencoder (VAE), and Deep Autoencoding Gaussian Mixture Model (DAEGMM). The results show that all three models provide anomaly detection in hardware telemetry data, though with
60#
發(fā)表于 2025-4-1 01:06:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 14:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
镇雄县| 寿光市| 子长县| 朝阳县| 丹棱县| 桃江县| 伊宁县| 定西市| 浦江县| 石首市| 盐边县| 叶城县| 九龙城区| 涿州市| 教育| 邯郸市| 宁武县| 徐水县| 蒙自县| 璧山县| 驻马店市| 诏安县| 资溪县| 崇明县| 泽州县| 巴青县| 湖南省| 祁阳县| 木兰县| 嘉义市| 岱山县| 沙坪坝区| 阳泉市| 大荔县| 杨浦区| 阿坝县| 普洱| 开阳县| 商都县| 巴彦淖尔市| 广德县|