找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication; Proceedings of MDCWC E. S. Gopi Conference proce

[復(fù)制鏈接]
樓主: Corrugate
41#
發(fā)表于 2025-3-28 17:33:56 | 只看該作者
LSTM Network for Hotspot Prediction in?Traffic Density of Cellular Network log likelihood ratio (LLR) method and cumulative distribution function (CDF) method to compute the hotspot parameters. On comparing the performances of the two methods, it can be concluded that the CDF method is more efficient and less computationally complex than the LLR method.
42#
發(fā)表于 2025-3-28 19:32:47 | 只看該作者
Auto-encoder—LSTM-Based Outlier Detection Method for WSNslus discriminative feature representations, and reconstruction error of among input–output of smooth auto-encoder is utilized as an activation signal for outlier detection. Moreover, we employed LSTM-bidirectional RNN for maturity voting for collective outlier detection.
43#
發(fā)表于 2025-3-28 23:43:44 | 只看該作者
Energy-Efficient Neighbor Discovery Using Bacterial Foraging Optimization (BFO) Algorithm for Directate active nodes with higher energy levels are selected from the neighbors during data transmission. The obtained results have shown that the recommended model minimizes power conservation and delay and enhances the lifetime of time of network activity.
44#
發(fā)表于 2025-3-29 06:30:07 | 只看該作者
45#
發(fā)表于 2025-3-29 09:19:48 | 只看該作者
1876-1100 l Institute of Technology Tiruchirappalli, India.Serves as aThis book is a collection of best selected research papers presented at the Conference on Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication (MDCWC 2020) held during October 22nd to 24th 2020, at the D
46#
發(fā)表于 2025-3-29 15:05:21 | 只看該作者
47#
發(fā)表于 2025-3-29 18:08:09 | 只看該作者
48#
發(fā)表于 2025-3-29 19:55:42 | 只看該作者
Dimensionality Reduction of KDD-99 Using Self-perpetuating Algorithmlarge. In this paper, a self-perpetuating algorithm on the individually analyzed feature selection techniques is proposed. The proposed algorithm came up with reduced feature subset of up to 14 features with reduced time, increased accuracy by 0.369%, and number of features decreased by 66.66% with J48 algorithm.
49#
發(fā)表于 2025-3-30 00:48:34 | 只看該作者
50#
發(fā)表于 2025-3-30 05:15:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 05:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹰潭市| 东乡族自治县| 防城港市| 台东市| 遂平县| 道孚县| 白沙| 普格县| 舞钢市| 房山区| 昭苏县| 崇阳县| 绥滨县| 南郑县| 临江市| 突泉县| 手游| 莱州市| 丁青县| 乐平市| 临安市| 阿瓦提县| 雷波县| 赞皇县| 黎平县| 昌黎县| 竹溪县| 永康市| 巴中市| 林西县| 华蓥市| 吉木萨尔县| 华宁县| 佛教| 东辽县| 郑州市| 望城县| 钟祥市| 海丰县| 茌平县| 邹平县|