找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in the Oil and Gas Industry; Including Geoscience Yogendra Narayan Pandey,Ayush Rastogi,Luigi Sapute Book 2020 Yogendra Na

[復(fù)制鏈接]
查看: 11452|回復(fù): 44
樓主
發(fā)表于 2025-3-21 19:08:57 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning in the Oil and Gas Industry
副標題Including Geoscience
編輯Yogendra Narayan Pandey,Ayush Rastogi,Luigi Sapute
視頻videohttp://file.papertrans.cn/621/620706/620706.mp4
概述Contains real-life oil and gas company examples, based on data sets from those industries.Covers supervised and unsupervised learning.Covers diverse industry topics, including geophysics, geological m
圖書封面Titlebook: Machine Learning in the Oil and Gas Industry; Including Geoscience Yogendra Narayan Pandey,Ayush Rastogi,Luigi Sapute Book 2020 Yogendra Na
描述.Apply machine and deep learning to solve some of the challenges in the oil and gas industry. The book begins with a brief discussion of the oil and gas exploration and production life cycle in the context of data flow through the different stages of industry operations. This leads to a survey of some interesting problems, which are good candidates for applying machine and deep learning approaches. The initial chapters provide a primer on the Python programming language used for implementing the algorithms; this is followed by an overview of supervised and unsupervised machine learning concepts. The authors provide industry examples using open source data sets along with practical explanations of the algorithms, without diving too deep into the theoretical aspects of the algorithms employed. .Machine Learning in the Oil and Gas Industry. covers problems encompassing diverse industry topics, including geophysics (seismic interpretation), geological modeling, reservoir engineering, and production engineering.?..Throughout the book, the emphasis is on providing a practical approach with step-by-step explanations and code examples for implementing machine and deep learning algorithms f
出版日期Book 2020
關(guān)鍵詞Python; Machine Learning; Deep Learning; Data Processing; Geological Modeling; Reservoir Modeling; Supervi
版次1
doihttps://doi.org/10.1007/978-1-4842-6094-4
isbn_softcover978-1-4842-6093-7
isbn_ebook978-1-4842-6094-4
copyrightYogendra Narayan Pandey, Ayush Rastogi, Sribharath Kainkaryam, Srimoyee Bhattacharya, and Luigi Sapu
The information of publication is updating

書目名稱Machine Learning in the Oil and Gas Industry影響因子(影響力)




書目名稱Machine Learning in the Oil and Gas Industry影響因子(影響力)學(xué)科排名




書目名稱Machine Learning in the Oil and Gas Industry網(wǎng)絡(luò)公開度




書目名稱Machine Learning in the Oil and Gas Industry網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning in the Oil and Gas Industry被引頻次




書目名稱Machine Learning in the Oil and Gas Industry被引頻次學(xué)科排名




書目名稱Machine Learning in the Oil and Gas Industry年度引用




書目名稱Machine Learning in the Oil and Gas Industry年度引用學(xué)科排名




書目名稱Machine Learning in the Oil and Gas Industry讀者反饋




書目名稱Machine Learning in the Oil and Gas Industry讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:04:14 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:35:39 | 只看該作者
Yogendra Narayan Pandey,Ayush Rastogi,Sribharath Kainkaryam,Srimoyee Bhattacharya,Luigi Saputelli
地板
發(fā)表于 2025-3-22 07:30:34 | 只看該作者
5#
發(fā)表于 2025-3-22 12:03:04 | 只看該作者
Yogendra Narayan Pandey,Ayush Rastogi,Sribharath Kainkaryam,Srimoyee Bhattacharya,Luigi Saputelli
6#
發(fā)表于 2025-3-22 16:18:57 | 只看該作者
7#
發(fā)表于 2025-3-22 20:24:14 | 只看該作者
8#
發(fā)表于 2025-3-22 23:27:09 | 只看該作者
Book 2020cs, including geophysics (seismic interpretation), geological modeling, reservoir engineering, and production engineering.?..Throughout the book, the emphasis is on providing a practical approach with step-by-step explanations and code examples for implementing machine and deep learning algorithms f
9#
發(fā)表于 2025-3-23 02:56:19 | 只看該作者
at professionals from a wide range of disciplines related to lighting and its effects on the night-time environment in the broadest sense of the word. Lay perso978-90-481-6242-0978-94-017-0125-9Series ISSN 0067-0057 Series E-ISSN 2214-7985
10#
發(fā)表于 2025-3-23 08:09:47 | 只看該作者
Yogendra Narayan Pandey,Ayush Rastogi,Sribharath Kainkaryam,Srimoyee Bhattacharya,Luigi Saputelliat professionals from a wide range of disciplines related to lighting and its effects on the night-time environment in the broadest sense of the word. Lay perso978-90-481-6242-0978-94-017-0125-9Series ISSN 0067-0057 Series E-ISSN 2214-7985
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 01:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
濮阳市| 施甸县| 德令哈市| 徐州市| 开远市| 皋兰县| 南雄市| 依安县| 康乐县| 开化县| 贞丰县| 呼伦贝尔市| 宁阳县| 江口县| 香格里拉县| 榆林市| 昌图县| 宣恩县| 丹凤县| 理塘县| 大足县| 茂名市| 安陆市| 仁怀市| 乐平市| 临颍县| 祁门县| 凤阳县| 巴林左旗| 东明县| 宣武区| 青海省| 古丈县| 五河县| 共和县| 呼伦贝尔市| 北京市| 邵阳县| 蒲城县| 岢岚县| 陆丰市|